Gao Jiahao, Han Fang, Jin Yingying, Wang Xiaoshuang, Zhang Jiawen
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Front Oncol. 2020 Aug 27;10:1654. doi: 10.3389/fonc.2020.01654. eCollection 2020.
To construct and verify a CT-based multidimensional nomogram for the evaluation of lymph node (LN) status in pancreatic ductal adenocarcinoma (PDAC).
We retrospectively assessed data from 172 patients with clinicopathologically confirmed PDAC surgically resected between February 2014 and November 2016. Patients were assigned to either a training cohort ( = 121) or a validation cohort ( = 51). We acquired radiomics features from the preoperative venous phase (VP) CT images. The maximum relevance-minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator (LASSO) methods were used to select the optimal features. We used multivariable logistic regression to construct a combined radiomics model for visualization in the form of a nomogram. Performance of the nomogram was evaluated by the receiver operating characteristic (ROC) curve approach, calibration testing, and analysis of clinical usefulness.
A Rad score consisting of 10 LN status-related radiomics features was found to be significantly associated with the actual LN status ( < 0.01). A nomogram that consisted of Rad scores, CT-reported parenchymal atrophy, and CT-reported LN status performed well in terms of predictive power in the training cohort (area under the curve, 0.92), and this was confirmed in the validation cohort (area under the curve, 0.95). The nomogram also performed well in the calibration test and decision curve analysis, demonstrating its potential clinical value.
A multidimensional radiomics nomogram consisting of Rad scores, CT-reported parenchymal atrophy, and CT-reported LN status may contribute to the non-invasive evaluation of LN status in PDAC patients.
构建并验证基于CT的多维列线图,用于评估胰腺导管腺癌(PDAC)的淋巴结(LN)状态。
我们回顾性评估了2014年2月至2016年11月期间手术切除的172例经临床病理证实为PDAC患者的数据。将患者分为训练队列(n = 121)或验证队列(n = 51)。我们从术前静脉期(VP)CT图像中获取了影像组学特征。使用最大相关-最小冗余(mRMR)算法和最小绝对收缩和选择算子(LASSO)方法选择最佳特征。我们使用多变量逻辑回归构建了一个以列线图形式可视化的联合影像组学模型。通过受试者操作特征(ROC)曲线方法、校准测试和临床实用性分析来评估列线图的性能。
发现由10个与LN状态相关的影像组学特征组成的Rad评分与实际LN状态显著相关(P < 0.01)。由Rad评分、CT报告的实质萎缩和CT报告的LN状态组成的列线图在训练队列中的预测能力方面表现良好(曲线下面积,0.92),并且在验证队列中得到了证实(曲线下面积,0.95)。列线图在校准测试和决策曲线分析中也表现良好,证明了其潜在的临床价值。
由Rad评分、CT报告的实质萎缩和CT报告的LN状态组成的多维影像组学列线图可能有助于对PDAC患者的LN状态进行无创评估。