Suppr超能文献

基于 MRI 的放射组学列线图检测原发性直肠癌合并同步肝转移。

MRI-based Radiomics nomogram to detect primary rectal cancer with synchronous liver metastases.

机构信息

Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China.

Department of Anorectal, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China.

出版信息

Sci Rep. 2019 Mar 4;9(1):3374. doi: 10.1038/s41598-019-39651-y.

Abstract

Synchronous liver metastasis (SLM) remains a major challenge for rectal cancer. Early detection of SLM is a key factor to improve the survival rate of rectal cancer. In this radiomics study, we predicted the SLM based on the radiomics of primary rectal cancer. A total of 328 radiomics features were extracted from the T2WI images of 194 patients. The least absolute shrinkage and selection operator (LASSO) regression was used to reduce the feature dimension and to construct the radiomics signature. after LASSO, principal component analysis (PCA) was used to sort the features of the surplus characteristics, and selected the features of the total contribution of 85%. Then the prediction model was built by linear regression, and the decision curve analysis was used to judge the net benefit of LASSO and PCA. In addition, we used two independent cohorts for training (n = 135) and validation (n = 159). We found that the model based on LASSO dimensionality construction had the maximum net benefit (in the training set (AUC [95% confidence interval], 0.857 [0.787-0.912]) and in the validation set (0.834 [0.714-0.918]). The radiomics nomogram combined with clinical risk factors and LASSO features showed a good predictive performance in the training set (0.921 [0.862-0.961]) and validation set (0.912 [0.809-0.97]). Our study indicated that radiomics based on primary rectal cancer could provide a non-invasive way to predict the risk of SLM in clinical practice.

摘要

同步肝转移 (SLM) 仍然是直肠癌的主要挑战。早期发现 SLM 是提高直肠癌生存率的关键因素。在这项放射组学研究中,我们基于原发性直肠癌的放射组学预测了 SLM。从 194 名患者的 T2WI 图像中提取了 328 个放射组学特征。最小绝对收缩和选择算子 (LASSO) 回归用于降低特征维度并构建放射组学特征。LASSO 后,主成分分析 (PCA) 用于对剩余特征的特征进行排序,并选择总贡献率为 85%的特征。然后通过线性回归构建预测模型,并使用决策曲线分析判断 LASSO 和 PCA 的净收益。此外,我们使用两个独立的队列进行训练 (n=135) 和验证 (n=159)。我们发现基于 LASSO 维度构建的模型具有最大的净收益(在训练集(AUC [95%置信区间],0.857 [0.787-0.912])和验证集(0.834 [0.714-0.918])。放射组学列线图结合临床危险因素和 LASSO 特征在训练集(0.921 [0.862-0.961])和验证集(0.912 [0.809-0.97])中均表现出良好的预测性能。我们的研究表明,基于原发性直肠癌的放射组学可以为临床实践中预测 SLM 的风险提供一种非侵入性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/6399278/2dd8becb0bde/41598_2019_39651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验