Suppr超能文献

四跨膜蛋白的开放构象塑造了细胞膜上的相互作用伙伴网络。

Open conformation of tetraspanins shapes interaction partner networks on cell membranes.

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.

Department of Chemistry, Washington University, St. Louis, MO, USA.

出版信息

EMBO J. 2020 Sep 15;39(18):e105246. doi: 10.15252/embj.2020105246. Epub 2020 Aug 16.

Abstract

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.

摘要

四跨膜蛋白,包括 CD53 和 CD81,通过在细胞膜上组织相互作用网络来调节多种细胞过程。在这里,我们报告了 CD53 处于开放构象的晶体结构,为伴侣相互作用做好了准备。CD53 的大细胞外结构域(EC2)从膜表面突出,并暴露一个可变区域,该区域通过氢氘交换被鉴定为 CD53 和 CD81 结合伴侣的共同界面。CD53 中的 EC2 取向得到细胞外环(EC1)的支持。然而,在 CD81 的封闭构象中,EC2 与 EC1 脱离并向膜旋转,从而阻止了伴侣相互作用。结构模拟表明,EC1-EC2 相互作用也支持 CD81 的开放构象。在 CD81 中破坏这种相互作用会损害其 CD19 伴侣的精确糖基化,而 CD19 是白血病免疫疗法的靶点。此外,CD53 中的 EC1 突变阻止了前 B 细胞向一种趋化因子的趋化运动,这种趋化因子支持 B 细胞在骨髓中的迁移和归巢,这是这里确定的 CD53 的主要功能之一。总的来说,开放构象是四跨膜蛋白-伴侣相互作用支持多种细胞过程所必需的。

相似文献

1
Open conformation of tetraspanins shapes interaction partner networks on cell membranes.
EMBO J. 2020 Sep 15;39(18):e105246. doi: 10.15252/embj.2020105246. Epub 2020 Aug 16.
3
The tetraspanin web revisited by super-resolution microscopy.
Sci Rep. 2015 Jul 17;5:12201. doi: 10.1038/srep12201.
4
The CD9, CD81, and CD151 EC2 domains bind to the classical RGD-binding site of integrin αvβ3.
Biochem J. 2017 Feb 15;474(4):589-596. doi: 10.1042/BCJ20160998. Epub 2016 Dec 19.
5
N-Glycosylation-dependent regulation of immune-specific tetraspanins CD37 and CD53.
Biophys J. 2024 Aug 6;123(15):2301-2311. doi: 10.1016/j.bpj.2023.11.3399. Epub 2023 Nov 28.
6
Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments.
Mol Cell Biol. 2006 Feb;26(4):1373-85. doi: 10.1128/MCB.26.4.1373-1385.2006.
7
Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection.
J Leukoc Biol. 2013 Jun;93(6):913-20. doi: 10.1189/jlb.0812391. Epub 2013 Apr 9.
9
Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81.
Science. 2021 Jan 15;371(6526):300-305. doi: 10.1126/science.abd9836.
10
Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket.
Cell. 2016 Nov 3;167(4):1041-1051.e11. doi: 10.1016/j.cell.2016.09.056. Epub 2016 Oct 27.

引用本文的文献

3
Tetraspanin proteins in membrane remodeling processes.
J Cell Sci. 2024 Jul 15;137(14). doi: 10.1242/jcs.261532. Epub 2024 Jul 25.
4
Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases.
MedComm (2020). 2024 Jul 15;5(8):e660. doi: 10.1002/mco2.660. eCollection 2024 Aug.
5
Cutting Edge: The Tetraspanin CD53 Promotes CXCR4 Signaling and Bone Marrow Homing in B Cells.
J Immunol. 2024 Apr 1;212(7):1075-1080. doi: 10.4049/jimmunol.2300336.
6
The co-receptor Tetraspanin12 directly captures Norrin to promote ligand-specific β-catenin signaling.
bioRxiv. 2024 Nov 20:2024.02.03.578714. doi: 10.1101/2024.02.03.578714.
7
Molecular Regulation and Oncogenic Functions of TSPAN8.
Cells. 2024 Jan 19;13(2):193. doi: 10.3390/cells13020193.
8
Tetraspanins: structure, dynamics, and principles of partner-protein recognition.
Trends Cell Biol. 2024 Jun;34(6):509-522. doi: 10.1016/j.tcb.2023.09.003. Epub 2023 Sep 30.
9
Membrane organization by tetraspanins and galectins shapes lymphocyte function.
Nat Rev Immunol. 2024 Mar;24(3):193-212. doi: 10.1038/s41577-023-00935-0. Epub 2023 Sep 27.
10
Structural basis for membrane-proximal proteolysis of substrates by ADAM10.
Cell. 2023 Aug 17;186(17):3632-3641.e10. doi: 10.1016/j.cell.2023.06.026. Epub 2023 Jul 28.

本文引用的文献

1
Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression.
iScience. 2020 May 22;23(5):101104. doi: 10.1016/j.isci.2020.101104. Epub 2020 Apr 27.
2
Structural insights into tetraspanin CD9 function.
Nat Commun. 2020 Mar 30;11(1):1606. doi: 10.1038/s41467-020-15459-7.
3
The Tetraspanin CD53 Regulates Early B Cell Development by Promoting IL-7R Signaling.
J Immunol. 2020 Jan 1;204(1):58-67. doi: 10.4049/jimmunol.1900539. Epub 2019 Nov 20.
4
RAG-Mediated DNA Breaks Attenuate PU.1 Activity in Early B Cells through Activation of a SPIC-BCLAF1 Complex.
Cell Rep. 2019 Oct 22;29(4):829-843.e5. doi: 10.1016/j.celrep.2019.09.026.
5
CD81 is a novel immunotherapeutic target for B cell lymphoma.
J Exp Med. 2019 Jul 1;216(7):1497-1508. doi: 10.1084/jem.20190186. Epub 2019 May 23.
6
Targeting the Tetraspanins with Monoclonal Antibodies in Oncology: Focus on Tspan8/Co-029.
Cancers (Basel). 2019 Feb 3;11(2):179. doi: 10.3390/cancers11020179.
7
The emerging role of ADAM metalloproteinases in immunity.
Nat Rev Immunol. 2018 Dec;18(12):745-758. doi: 10.1038/s41577-018-0068-5.
9
The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration.
Front Immunol. 2018 Jul 18;9:1644. doi: 10.3389/fimmu.2018.01644. eCollection 2018.
10
Immune Targeting of Tetraspanins Involved in Cell Invasion and Metastasis.
Front Immunol. 2018 Jun 12;9:1277. doi: 10.3389/fimmu.2018.01277. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验