Suppr超能文献

评估元学习器以分析生存数据中的治疗异质性:在COVID-19大流行期间儿科哮喘护理电子健康记录中的应用。

Evaluating Meta-Learners to Analyze Treatment Heterogeneity in Survival Data: Application to Electronic Health Records of Pediatric Asthma Care in COVID-19 Pandemic.

作者信息

Bo Na, Jeong Jong-Hyeon, Forno Erick, Ding Ying

机构信息

Department of Biostatistics and Health Data Science, University of Pittsburgh, Pittsburgh, Pennsylvania.

Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.

出版信息

Stat Med. 2025 Feb 10;44(3-4):e10333. doi: 10.1002/sim.10333.

Abstract

An important aspect of precision medicine focuses on characterizing diverse responses to treatment due to unique patient characteristics, also known as heterogeneous treatment effects (HTE) or individualized treatment effects (ITE), and identifying beneficial subgroups with enhanced treatment effects. Estimating HTE with right-censored data in observational studies remains challenging. In this paper, we propose a pseudo-ITE-based framework for analyzing HTE in survival data, which includes a group of meta-learners for estimating HTE, a variable importance metric for identifying predictive variables to HTE, and a data-adaptive procedure to select subgroups with enhanced treatment effects. We evaluate the finite sample performance of the framework under various observational study settings. Furthermore, we applied the proposed methods to analyze the treatment heterogeneity of a written asthma action plan (WAAP) on time-to-ED (Emergency Department) return due to asthma exacerbation using a large asthma electronic health records dataset with visit records expanded from pre- to post-COVID-19 pandemic. We identified vulnerable subgroups of patients with poorer asthma outcomes but enhanced benefits from WAAP and characterized patient profiles. Our research provides valuable insights for healthcare providers on the strategic distribution of WAAP, particularly during disruptive public health crises, ultimately improving the management and control of pediatric asthma.

摘要

精准医学的一个重要方面聚焦于刻画因患者独特特征而产生的对治疗的多样反应,也称为异质性治疗效果(HTE)或个体化治疗效果(ITE),并识别具有增强治疗效果的有益亚组。在观察性研究中利用删失数据估计HTE仍然具有挑战性。在本文中,我们提出了一个基于伪ITE的框架来分析生存数据中的HTE,该框架包括一组用于估计HTE的元学习器、一个用于识别HTE预测变量的变量重要性度量,以及一个用于选择具有增强治疗效果亚组的数据自适应程序。我们在各种观察性研究设置下评估了该框架的有限样本性能。此外,我们应用所提出的方法,使用一个大型哮喘电子健康记录数据集,分析书面哮喘行动计划(WAAP)对因哮喘加重而返回急诊科(ED)的时间的治疗异质性,该数据集的就诊记录从新冠疫情前扩展到了疫情后时期。我们识别出了哮喘结局较差但从WAAP中获益增加的脆弱患者亚组,并刻画了患者特征。我们的研究为医疗保健提供者在WAAP的战略分配方面提供了有价值的见解,特别是在破坏性的公共卫生危机期间,最终改善儿童哮喘的管理和控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e3a/11758764/712bd46fb0bc/SIM-44-0-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验