Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.
Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.
J Proteome Res. 2021 Jan 1;20(1):909-922. doi: 10.1021/acs.jproteome.0c00690. Epub 2020 Sep 25.
Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration. In this study, we used targeted-metabolomics and C tracing to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome. We found inhibition of mitochondrial respiration strikingly influenced both the intracellular and extracellular metabolome in primary RPE cells. Intriguingly, the extracellular metabolic changes sensitively reflected the intracellular changes. These changes included substantially enhanced glucose consumption and lactate production; reduced release of pyruvate, citrate, and ketone bodies; and massive accumulation of multiple amino acids and nucleosides. In conclusion, these findings reveal a metabolic signature of nutrient consumption and release in mitochondrial dysfunction in RPE cells. Testing medium metabolites provides a sensitive and noninvasive method to assess mitochondrial function in nutrient utilization and transport.
哺乳动物细胞中的线粒体呼吸不仅产生 ATP 来满足自身的能量需求,还与生物合成途径偶联,以产生可输出到支持邻近细胞的代谢物。然而,线粒体呼吸缺陷如何影响这些生物合成和输出途径仍知之甚少。视网膜色素上皮 (RPE) 细胞中的线粒体功能障碍是导致包括年龄相关性黄斑变性在内的退行性视网膜疾病中邻近光感受器死亡的一个新出现的因素。在这项研究中,我们使用靶向代谢组学和 C 追踪来研究线粒体呼吸抑制如何影响细胞内和细胞外代谢组。我们发现,线粒体呼吸的抑制显著影响了原代 RPE 细胞的细胞内和细胞外代谢组。有趣的是,细胞外代谢变化敏感地反映了细胞内变化。这些变化包括葡萄糖摄取和乳酸生成显著增加;丙酮酸、柠檬酸和酮体的释放减少;以及多种氨基酸和核苷的大量积累。总之,这些发现揭示了 RPE 细胞中线粒体功能障碍中营养物质消耗和释放的代谢特征。测试培养基代谢物提供了一种敏感且非侵入性的方法来评估营养物质利用和运输中的线粒体功能。