Garin M, Heinonen J, Werner L, Pasanen T P, Vähänissi V, Haarahiltunen A, Juntunen M A, Savin H
Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, 02150 Espoo, Finland.
Department of Engineering, Universitat de Vic-Universitat Central de Catalunya, Carrer de la Laura 13, 08500 Vic, Spain.
Phys Rev Lett. 2020 Sep 11;125(11):117702. doi: 10.1103/PhysRevLett.125.117702.
At present, ultraviolet sensors are utilized in numerous fields ranging from various spectroscopy applications via biotechnical innovations to industrial process control. Despite this, the performance of current UV sensors is surprisingly poor. Here, we break the theoretical one-photon-one-electron barrier and demonstrate a device with a certified external quantum efficiency above 130% in UV range without external amplification. The record high performance is obtained using a nanostructured silicon photodiode with self-induced junction. We show that the high efficiency is based on effective utilization of multiple carrier generation by impact ionization taking place in the nanostructures. While the results can readily have a significant impact on the UV-sensor industry, the underlying technological concept can be applied to other semiconductor materials, thereby extending above unity response to longer wavelengths and offering new perspectives for improving efficiencies beyond the Shockley-Queisser limit.
目前,紫外线传感器被广泛应用于众多领域,从各种光谱应用到生物技术创新,再到工业过程控制。尽管如此,当前紫外线传感器的性能却出奇地差。在此,我们突破了理论上的单光子单电子屏障,并展示了一种在紫外线范围内无需外部放大、经认证的外部量子效率高于130%的器件。使用具有自诱导结的纳米结构硅光电二极管获得了创纪录的高性能。我们表明,高效率基于纳米结构中通过碰撞电离有效利用多载流子产生。虽然这些结果很容易对紫外线传感器行业产生重大影响,但潜在的技术概念可应用于其他半导体材料,从而将高于单位的响应扩展到更长波长,并为突破肖克利-奎塞尔极限提高效率提供新的视角。