Aerosol and Bioengineering Laboratory, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
Int J Environ Res Public Health. 2020 Sep 23;17(19):6960. doi: 10.3390/ijerph17196960.
This study calculates and elucidates the minimum size of respiratory particles that are potential carriers of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); furthermore, it evaluates the aerosol generation potential of SARS-CoV-2. The calculations are based on experimental results and theoretical models. In the case of maximum viral-loading derived from experimental data of COVID-19 patients, 8.97 × 10% of a respiratory fluid particle from a COVID-19 patient is occupied by SARS-CoV-2. Hence, the minimum size of a respiratory particle that can contain SARS-CoV-2 is calculated to be approximately 9.3 μm. The minimum size of the particles can decrease due to the evaporation of water on the particle surfaces. There are limitations to this analysis: (a) assumption that the viruses are homogeneously distributed in respiratory fluid particles and (b) considering a gene copy as a single virion in unit conversions. However, the study shows that high viral loads can decrease the minimum size of respiratory particles containing SARS-CoV-2, thereby increasing the probability of aerosol generation of the viruses. The aerosol generation theory created in this study for COVID-19 has the potential to be applied to other contagious diseases that are caused by respiratory infectious microorganisms.
本研究计算并阐明了可能携带严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的呼吸颗粒的最小尺寸;此外,还评估了 SARS-CoV-2 的气溶胶生成潜力。该计算基于实验结果和理论模型。在从 COVID-19 患者的实验数据得出的最大病毒载量的情况下,COVID-19 患者的呼吸液滴中有 8.97×10%被 SARS-CoV-2 占据。因此,可容纳 SARS-CoV-2 的呼吸颗粒的最小尺寸被计算为大约 9.3 μm。由于颗粒表面上水的蒸发,颗粒的最小尺寸可能会减小。该分析存在局限性:(a)假设病毒在呼吸液滴中均匀分布,以及(b)在单位转换中,将基因拷贝视为单个病毒粒子。然而,研究表明,高病毒载量会降低含有 SARS-CoV-2 的呼吸颗粒的最小尺寸,从而增加病毒气溶胶生成的概率。本研究为 COVID-19 创建的气溶胶生成理论有可能适用于由呼吸道传染性微生物引起的其他传染病。