Department of Mechanical Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States.
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte , Charlotte, North Carolina 28223, United States.
Nano Lett. 2017 Dec 13;17(12):7218-7225. doi: 10.1021/acs.nanolett.7b02380. Epub 2017 Nov 7.
Thermal transport in amorphous silicon dioxide (a-SiO) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO. With solid experimental data demonstrating ballistic phonon transport through a-SiO, this work should provide important insight into thermal management of electronic devices.
非晶硅二氧化硅 (a-SiO) 的热传输传统上被视为振动的随机行走,这是由于其非常无序的结构,导致平均自由程 (MFP) 大约与原子间距离相同。然而,这种情况一直存在争议,鉴于在纳米电子设备中普遍存在薄的 a-SiO 层,为了精确管理电子设备的热,有必要更好地理解这个问题。与常用的平面外测量方法不同,我们在这里报告了一项研究,该研究探讨了夹在两层之间的 a-SiO 的双硅纳米带的平面内热导率。通过比较双带样品和相应的单带样品的热导率,我们表明,即使在室温下,热声子也可以在高达 5nm 厚的 a-SiO 中弹道穿透。对具有各种氧化物层厚度和范德华键合强度的双带样品进行综合检查,可以提取 a-SiO 中的平均弹道声子穿透深度。通过具有证明弹道声子通过 a-SiO 传输的坚实实验数据,这项工作应该为电子设备的热管理提供重要的见解。