Suppr超能文献

无 RNA 代谢标记的 RNA 合成、加工和降解的全基因组动态。

Genome-wide dynamics of RNA synthesis, processing, and degradation without RNA metabolic labeling.

机构信息

Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.

Physics Department and INFN, University of Turin, 10125 Turin, Italy.

出版信息

Genome Res. 2020 Oct;30(10):1492-1507. doi: 10.1101/gr.260984.120. Epub 2020 Sep 25.

Abstract

The quantification of the kinetic rates of RNA synthesis, processing, and degradation are largely based on the integrative analysis of total and nascent transcription, the latter being quantified through RNA metabolic labeling. We developed INSPEcT-, a computational method based on the mathematical modeling of premature and mature RNA expression that is able to quantify kinetic rates from steady-state or time course total RNA-seq data without requiring any information on nascent transcripts. Our approach outperforms available solutions, closely recapitulates the kinetic rates obtained through RNA metabolic labeling, improves the ability to detect changes in transcript half-lives, reduces the cost and complexity of the experiments, and can be adopted to study experimental conditions in which nascent transcription cannot be readily profiled. Finally, we applied INSPEcT- to the characterization of post-transcriptional regulation landscapes in dozens of physiological and disease conditions. This approach was included in the INSPEcT Bioconductor package, which can now unveil RNA dynamics from steady-state or time course data, with or without the profiling of nascent RNA.

摘要

RNA 合成、加工和降解的动力学速率的定量分析在很大程度上基于总转录物和新生转录物的综合分析,后者通过 RNA 代谢标记进行定量。我们开发了 INSPEcT-,这是一种基于不成熟和成熟 RNA 表达的数学模型的计算方法,能够从稳态或时间过程的总 RNA-seq 数据中定量动力学速率,而不需要任何关于新生转录物的信息。我们的方法优于现有解决方案,紧密再现通过 RNA 代谢标记获得的动力学速率,提高检测转录物半衰期变化的能力,降低实验的成本和复杂性,并可用于研究新生转录物不易分析的实验条件。最后,我们将 INSPEcT-应用于数十种生理和疾病条件下的转录后调控景观的表征。该方法被包含在 INSPEcT Bioconductor 包中,现在可以从稳态或时间过程数据中揭示 RNA 动力学,无论是否对新生 RNA 进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca20/7605262/8ec3aaca894b/1492f01.jpg

相似文献

1
Genome-wide dynamics of RNA synthesis, processing, and degradation without RNA metabolic labeling.
Genome Res. 2020 Oct;30(10):1492-1507. doi: 10.1101/gr.260984.120. Epub 2020 Sep 25.
4
Gaining insight into transcriptome-wide RNA population dynamics through the chemistry of 4-thiouridine.
Wiley Interdiscip Rev RNA. 2019 Jan;10(1):e1513. doi: 10.1002/wrna.1513. Epub 2018 Oct 28.
5
Dynamics of transcriptional and post-transcriptional regulation.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa389.
7
Using TT-seq for profiling nascent transcription and measuring transcript elongation.
Nat Protoc. 2020 Feb;15(2):604-627. doi: 10.1038/s41596-019-0262-3. Epub 2020 Jan 8.
8
m6A-Dependent RNA Dynamics in T Cell Differentiation.
Genes (Basel). 2019 Jan 8;10(1):28. doi: 10.3390/genes10010028.
10
INSPEcT: a computational tool to infer mRNA synthesis, processing and degradation dynamics from RNA- and 4sU-seq time course experiments.
Bioinformatics. 2015 Sep 1;31(17):2829-35. doi: 10.1093/bioinformatics/btv288. Epub 2015 May 7.

引用本文的文献

4
Release and degradation of dissolved environmental RNAs from zebrafish cells.
RNA Biol. 2025 Dec;22(1):1-12. doi: 10.1080/15476286.2025.2486281. Epub 2025 Apr 24.
5
Coupling mechanisms coordinating mRNA translation with stages of the mRNA lifecycle.
RNA Biol. 2025 Dec;22(1):1-12. doi: 10.1080/15476286.2025.2483001. Epub 2025 Mar 24.
7
Study of the RNA splicing kinetics via in vivo 5-EU labeling.
RNA. 2024 Sep 16;30(10):1356-1373. doi: 10.1261/rna.079937.123.
8
Isoform and pathway-specific regulation of post-transcriptional RNA processing in human cells.
bioRxiv. 2024 Jun 12:2024.06.12.598705. doi: 10.1101/2024.06.12.598705.
10
Deciphering a global source of non-genetic heterogeneity in cancer cells.
Nucleic Acids Res. 2023 Sep 22;51(17):9019-9038. doi: 10.1093/nar/gkad666.

本文引用的文献

1
Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms.
Genome Res. 2020 Sep;30(9):1332-1344. doi: 10.1101/gr.257857.119. Epub 2020 Sep 4.
3
Generalizing RNA velocity to transient cell states through dynamical modeling.
Nat Biotechnol. 2020 Dec;38(12):1408-1414. doi: 10.1038/s41587-020-0591-3. Epub 2020 Aug 3.
4
Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts.
Front Genet. 2020 Apr 28;11:394. doi: 10.3389/fgene.2020.00394. eCollection 2020.
5
Transcription Dynamics Regulate Poly(A) Tails and Expression of the RNA Degradation Machinery to Balance mRNA Levels.
Mol Cell. 2020 May 7;78(3):434-444.e5. doi: 10.1016/j.molcel.2020.03.022. Epub 2020 Apr 14.
6
Ontology-driven integrative analysis of omics data through Onassis.
Sci Rep. 2020 Jan 20;10(1):703. doi: 10.1038/s41598-020-57716-1.
7
Nascent RNA analyses: tracking transcription and its regulation.
Nat Rev Genet. 2019 Dec;20(12):705-723. doi: 10.1038/s41576-019-0159-6. Epub 2019 Aug 9.
8
On the optimal design of metabolic RNA labeling experiments.
PLoS Comput Biol. 2019 Aug 7;15(8):e1007252. doi: 10.1371/journal.pcbi.1007252. eCollection 2019 Aug.
9
An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation.
EMBO Rep. 2019 Sep;20(9):e47987. doi: 10.15252/embr.201947987. Epub 2019 Jul 23.
10
scSLAM-seq reveals core features of transcription dynamics in single cells.
Nature. 2019 Jul;571(7765):419-423. doi: 10.1038/s41586-019-1369-y. Epub 2019 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验