Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.
German Center for Cardiovascular Research (DZHK), Partner site Heidelberg-Mannheim, Heidelberg, Germany.
PLoS Comput Biol. 2019 Aug 7;15(8):e1007252. doi: 10.1371/journal.pcbi.1007252. eCollection 2019 Aug.
Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has become the de facto standard approach to study alterations in RNA transcription, processing or decay. Regardless of advances in the experimental protocols and techniques, every experimentalist needs to specify the key aspects of experimental design: For example, which protocol should be used (biochemical separation vs. nucleotide conversion) and what is the optimal labeling time? In this work, we provide approximate answers to these questions using the asymptotic theory of optimal design. Specifically, we investigate, how the variance of degradation rate estimates depends on the time and derive the optimal time for any given degradation rate. Subsequently, we show that an increase in sample numbers should be preferred over an increase in sequencing depth. Lastly, we provide some guidance on use cases when laborious biochemical separation outcompetes recent nucleotide conversion based methods (such as SLAMseq) and show, how inefficient conversion influences the precision of estimates. Code and documentation can be found at https://github.com/dieterich-lab/DesignMetabolicRNAlabeling.
大规模并行 RNA 测序(RNA-seq)与代谢标记相结合已成为研究 RNA 转录、加工或降解变化的事实上的标准方法。无论实验方案和技术如何进步,每个实验人员都需要指定实验设计的关键方面:例如,应该使用哪种方案(生化分离与核苷酸转化),最佳标记时间是多少?在这项工作中,我们使用最优设计的渐近理论为这些问题提供了近似答案。具体来说,我们研究了降解率估计值的方差如何随时间变化,并为任何给定的降解率推导出最佳时间。随后,我们表明,增加样本数量应优先于增加测序深度。最后,我们提供了一些关于在费力的生化分离优于最近基于核苷酸转化的方法(如 SLAMseq)的情况下的使用案例的指导,并展示了转换效率低下如何影响估计的精度。代码和文档可在 https://github.com/dieterich-lab/DesignMetabolicRNAlabeling 上找到。