Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany.
Nature. 2019 Jul;571(7765):419-423. doi: 10.1038/s41586-019-1369-y. Epub 2019 Jul 10.
Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling, biochemical nucleoside conversion and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.
单细胞 RNA 测序 (scRNA-seq) 突出了细胞间异质性在健康和疾病中的表型变异性中的重要作用。然而,目前的 scRNA-seq 方法仅提供了基因表达的快照,并且很少提供关于转录的真实时间动态和随机性质的信息。scRNA-seq 分析的另一个关键限制是每个单个细胞的 RNA 谱只能分析一次。在这里,我们引入了单细胞硫醇 (SH)-连接的 RNA 代谢标记测序 (scSLAM-seq),它将代谢 RNA 标记、生化核苷转换和 scRNA-seq 结合在一起,通过区分新 RNA 和旧 RNA 来直接记录转录活性,每个单细胞可区分数千个基因的新 RNA 和旧 RNA。我们使用 scSLAM-seq 来研究溶细胞巨细胞病毒在单个小鼠成纤维细胞中的感染起始。从旧 RNA 推断出的细胞周期状态和感染剂量使基于新 RNA 的剂量反应分析成为可能。scSLAM-seq 因此在单细胞水平上可视化和解释了转录活性的差异。此外,它描绘了宿主基因表达中的“开-关”开关和转录爆发动力学,具有广泛的基因特异性差异,这些差异与启动子固有特征(TBP-TATA 盒相互作用和 DNA 甲基化)相关。因此,基因特异性特征而非细胞特异性特征解释了单个细胞之间转录组的异质性以及对扰动的转录反应。