College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
Environ Sci Pollut Res Int. 2020 Dec;27(36):44807-44819. doi: 10.1007/s11356-020-10917-7. Epub 2020 Sep 25.
Lake water-level fluctuation is a complex and dynamic process, characterized by high stochasticity and nonlinearity, and difficult to model and forecast. In recent years, applications of machine learning (ML) models have yielded substantial progress in forecasting lake water-level fluctuations. This paper presents a comprehensive review of the applications of ML models for modeling water-level dynamics in lakes. Among the many existing ML models, seven popular ML model types are reviewed: (1) artificial neural network (ANN); (2) support vector machine (SVM); (3) artificial neuro-fuzzy inference system (ANFIS); (4) hybrid models, such as hybrid wavelet-artificial neural network (WA-ANN) model, hybrid wavelet-artificial neuro-fuzzy inference system (WA-ANFIS) model, and hybrid wavelet-support vector machine (WA-SVM) model; (5) evolutionary models, such as gene expression programming (GEP) and genetic programming (GP); (6) extreme learning machine (ELM); and (7) deep learning (DL). Model inputs, data split, model performance criteria, and model inter-comparison as well as the associated issues are discussed. The advantages and limitations of the established ML models are also discussed. Some specific directions for future research are also offered. This review provides a new vision for hydrologists and water resources planners for sustainable management of lakes.
湖泊水位波动是一个复杂而动态的过程,具有高度的随机性和非线性,难以进行建模和预测。近年来,机器学习 (ML) 模型的应用在预测湖泊水位波动方面取得了重大进展。本文全面回顾了 ML 模型在湖泊水位动态建模中的应用。在众多现有的 ML 模型中,本文回顾了七种流行的 ML 模型类型:(1) 人工神经网络 (ANN);(2) 支持向量机 (SVM);(3) 人工神经模糊推理系统 (ANFIS);(4) 混合模型,如混合小波-人工神经网络 (WA-ANN) 模型、混合小波-人工神经模糊推理系统 (WA-ANFIS) 模型和混合小波-支持向量机 (WA-SVM) 模型;(5) 进化模型,如基因表达编程 (GEP) 和遗传编程 (GP);(6) 极限学习机 (ELM);以及 (7) 深度学习 (DL)。讨论了模型输入、数据分割、模型性能标准和模型比较以及相关问题。还讨论了所建立的 ML 模型的优点和局限性。此外,还提出了一些未来研究的具体方向。本综述为水文学家和水资源规划者提供了一个可持续管理湖泊的新视角。