State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, 430079, China.
Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS, 39762-9690, USA.
J Environ Manage. 2024 Nov;370:122490. doi: 10.1016/j.jenvman.2024.122490. Epub 2024 Sep 24.
The accurate detection and monitoring of supraglacial lakes in high mountainous regions are crucial for understanding their dynamic nature and implications for environmental management and sustainable development goals. In this study, we propose a novel approach that integrates multisource data and machine learning techniques for supra-glacial lake detection in the Passu Batura glacier of the Hunza Basin, Pakistan. We extract pertinent features or parameters by leveraging multisource datasets such as radar backscatter intensity VH and VV parameters from Sentinel-1 Ground Range Detected (GRD) data, near-infrared (NIR), NDWI_green, NDWI_blue parameters from Sentinel-2 Multi-spectral Instrument (MSI) data, and surface slope, aspect, and elevation parameters from topographic data. The entire dataset is partitioned into training and testing sets, with machine learning models including the artificial neural network (ANN), the support vector machine (SVM), logistic regression (LR), random forest (RF), and K-nearest neighbour (KNN) trained on the training data (70%). Accuracy assessment employs testing data and involves the evaluation of metrics such as ROC curves and confusion matrices. The best-performing model, ANN, is validated against manually digitized lake polygons derived from Sentinel-2 and Google Earth Pro imagery. Furthermore, the digitized lake polygons are used to analyze glacial lake dynamics from 2016 to 2022. Key findings of this research presented that the NDWI_green, Sigma0_VH, and elevation are the most significant predictors in detecting supra-glacial lakes. Among the various trained and evaluated models, the Artificial Neural Network (ANN) achieved the highest performance (accuracy: 95%, AUC: 0.99) and accurately mapped supra-glacial lakes regardless of their small size. The findings have significant implications for understanding glacial lake behavior in the context of climate change and informing future research and monitoring efforts.
高山地区的冰上湖泊的准确探测和监测对于了解其动态性质以及对环境管理和可持续发展目标的影响至关重要。在这项研究中,我们提出了一种新的方法,该方法结合了多源数据和机器学习技术,用于检测巴基斯坦 Hunza 流域的 Passu Batura 冰川上的冰上湖泊。我们利用多源数据集(例如 Sentinel-1 地面距离探测(GRD)数据中的雷达反向散射强度 VH 和 VV 参数、Sentinel-2 多光谱仪器(MSI)数据中的近红外(NIR)、NDWI_green、NDWI_blue 参数以及地形数据中的表面坡度、方位和海拔参数)提取相关特征或参数。整个数据集分为训练集和测试集,在训练数据(70%)上训练机器学习模型,包括人工神经网络(ANN)、支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)和 K-最近邻(KNN)。使用测试数据进行准确性评估,包括评估 ROC 曲线和混淆矩阵等指标。表现最佳的模型是 ANN,它是针对从 Sentinel-2 和 Google Earth Pro 图像手动数字化的湖泊多边形进行验证的。此外,还使用数字化的湖泊多边形来分析 2016 年至 2022 年的冰湖动态。这项研究的主要发现表明,NDWI_green、Sigma0_VH 和海拔是检测冰上湖泊的最重要预测因子。在各种训练和评估的模型中,人工神经网络(ANN)的性能最高(准确性:95%,AUC:0.99),并且无论湖泊大小如何,都可以准确地绘制冰上湖泊。这些发现对于了解气候变化背景下的冰湖行为以及为未来的研究和监测工作提供信息具有重要意义。