Suppr超能文献

一个遗传筛选实验,旨在识别受十一烯基磷酸循环影响的因素,揭示了大肠杆菌形态发生过程中的新的关联。

A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli.

机构信息

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Mol Microbiol. 2021 Feb;115(2):191-207. doi: 10.1111/mmi.14609. Epub 2020 Oct 12.

Abstract

Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl pyrophosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic interactions which, in combination with ΔybjG ΔlpxT ΔbacA, are lethal or reduce fitness. The screen uncovered novel connections to cell division, DNA replication/repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. Loss of QseC causes overactivation of the QseB response regulator by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in QseC's absence and prior functions ascribed to QseBC may originate from cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.

摘要

十一烯基磷酸酯(Und-P)是一种必需的脂质载体,可在细菌中通过细胞质膜运输细胞壁中间体。Und-P 是通过去磷酸化十一烯基焦磷酸酯(Und-PP)产生的。在大肠杆菌中,BacA、PgpB、YbjG 和 LpxT 去磷酸化 Und-PP,是条件必需的。为了确定 Und-P 代谢缺陷时出现的脆弱性,我们开发了一种用于合成相互作用的遗传筛选,该筛选与ΔybjGΔlpxTΔbacA 结合使用是致命的或降低适应性。该筛选揭示了与细胞分裂、DNA 复制/修复、信号转导和谷胱甘肽代谢的新联系。进一步的分析显示了几个新的形态发生基因;其中一个基因(qseC)的缺失导致细胞增大和裂解。QseC 是 QseBC 双组分系统的传感器激酶成分。QseC 的缺失导致 PmrB 交叉磷酸化过度激活 QseB 应答调节子。在这里,我们表明,完全删除 qseB 可完全逆转ΔqseC 细胞的形状缺陷,rprA(一种小 RNA)的过表达也是如此。令人惊讶的是,删除 pmrB 只能部分抑制 qseC 相关的形状缺陷。因此,在 QseC 缺失的情况下,QseB 被多种因素激活,而先前归因于 QseBC 的功能可能源于细胞壁缺陷。总之,我们的研究结果为确定新的细胞完整性决定因素提供了一个框架,这些决定因素可能成为未来治疗的靶点。

相似文献

本文引用的文献

1
Regulation of peptidoglycan synthesis and remodelling.肽聚糖合成和重塑的调控。
Nat Rev Microbiol. 2020 Aug;18(8):446-460. doi: 10.1038/s41579-020-0366-3. Epub 2020 May 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验