Zhang Xiang, Liang Ming, Yang Zehong, Zheng Chushan, Wu Jiayi, Ou Bing, Li Haojiang, Wu Xiaoyan, Luo Baoming, Shen Jun
Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Front Oncol. 2020 Aug 28;10:1621. doi: 10.3389/fonc.2020.01621. eCollection 2020.
Shear-wave elastography (SWE) can improve the diagnostic specificity of the B-model ultrasonography (US) in breast cancer. However, whether deep learning-based radiomics signatures based on the B-mode US (B-US-RS) or SWE (SWE-RS) could further improve the diagnostic performance remains to be investigated. We aimed to develop the B-US-RS and SWE-RS and determine their performances in classifying breast masses.
This retrospective study included 291 women (mean age ± standard deviation, 40.9 ± 12.3 years) from two centers who had US-visible solid breast masses and underwent biopsy and/or surgical resection between June 2015 and July 2017. B-mode US and SWE images of the 198 masses in 198 patients (training cohort) from center 1 were segmented, respectively, to construct B-US-RS and SWE-RS using the least absolute shrinkage and selection operator regression and tested in an independent validation cohort of 65 masses in 65 patients from center 1 and in an external validation cohort of 28 masses in 28 patients from center 2. The performances of B-US-RS and SWE-RS were assessed using receiver operating characteristic (ROC) analysis and compared with that of radiologist assessment [Breast Imaging Reporting and Data System (BI-RADS)] and quantitative SWE parameters [maximum elasticity ( ), mean elasticity ( ), elasticity ratio ( ), and elastic modulus standard deviation ( )] by using the McNemar test.
The single best-performing quantitative SWE parameter, , had a higher specificity than BI-RADS assessment in the training and independent validation cohorts ( < 0.001 for both). The areas under the ROC curves (AUCs) of B-US-RS and SWE-RS both were 0.99 (95% CI = 0.99-1.00) in the training cohort, 1.00 (95% CI = 1.00-1.00) in the independent validation cohort, and 1.00 (95% CI = 1.00-1.00) in the external validation cohort. The specificities of B-US-RS and SWE-RS were higher than that of in the training ( < 0.001 for both) and independent validation cohorts ( = 0.02 for both).
The B-US-RS and SWE-RS outperformed the quantitative SWE parameters and BI-RADS assessment for classifying breast masses. The integration of the deep learning-based radiomics approach would help improve the classification ability of B-mode US and SWE for breast masses.
剪切波弹性成像(SWE)可提高B型超声(US)对乳腺癌诊断的特异性。然而,基于深度学习的B型超声影像组学特征(B-US-RS)或SWE影像组学特征(SWE-RS)能否进一步提高诊断性能仍有待研究。我们旨在开发B-US-RS和SWE-RS,并确定它们在乳腺肿块分类中的性能。
这项回顾性研究纳入了来自两个中心的291名女性(平均年龄±标准差,40.9±12.3岁),她们有超声可见的乳腺实性肿块,并在2015年6月至2017年7月期间接受了活检和/或手术切除。对中心1的198例患者(训练队列)的198个肿块的B型超声和SWE图像分别进行分割,使用最小绝对收缩和选择算子回归构建B-US-RS和SWE-RS,并在中心1的65例患者的65个肿块的独立验证队列以及中心2的28例患者的28个肿块的外部验证队列中进行测试。使用受试者操作特征(ROC)分析评估B-US-RS和SWE-RS的性能,并通过McNemar检验与放射科医生评估[乳腺影像报告和数据系统(BI-RADS)]以及定量SWE参数[最大弹性( )、平均弹性( )、弹性比( )和弹性模量标准差( )]进行比较。
在训练队列和独立验证队列中,表现最佳的单个定量SWE参数 的特异性均高于BI-RADS评估(两者均P<0.001)。在训练队列中,B-US-RS和SWE-RS的ROC曲线下面积(AUC)均为0.99(95%CI = 0.99 - 1.00),在独立验证队列中为1.00(95%CI = 1.00 - 1.00),在外部验证队列中为1.00(95%CI = 1.00 - 1.00)。在训练队列(两者均P<0.001)和独立验证队列(两者均P = 0.02)中,B-US-RS和SWE-RS的特异性均高于 。
在乳腺肿块分类方面,B-US-RS和SWE-RS优于定量SWE参数和BI-RADS评估。基于深度学习的影像组学方法的整合将有助于提高B型超声和SWE对乳腺肿块的分类能力。