Suppr超能文献

基于深度学习的B型超声和剪切波弹性成像的放射组学:在乳腺肿块分类中的性能提升

Deep Learning-Based Radiomics of B-Mode Ultrasonography and Shear-Wave Elastography: Improved Performance in Breast Mass Classification.

作者信息

Zhang Xiang, Liang Ming, Yang Zehong, Zheng Chushan, Wu Jiayi, Ou Bing, Li Haojiang, Wu Xiaoyan, Luo Baoming, Shen Jun

机构信息

Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Oncol. 2020 Aug 28;10:1621. doi: 10.3389/fonc.2020.01621. eCollection 2020.

Abstract

OBJECTIVE

Shear-wave elastography (SWE) can improve the diagnostic specificity of the B-model ultrasonography (US) in breast cancer. However, whether deep learning-based radiomics signatures based on the B-mode US (B-US-RS) or SWE (SWE-RS) could further improve the diagnostic performance remains to be investigated. We aimed to develop the B-US-RS and SWE-RS and determine their performances in classifying breast masses.

MATERIALS AND METHODS

This retrospective study included 291 women (mean age ± standard deviation, 40.9 ± 12.3 years) from two centers who had US-visible solid breast masses and underwent biopsy and/or surgical resection between June 2015 and July 2017. B-mode US and SWE images of the 198 masses in 198 patients (training cohort) from center 1 were segmented, respectively, to construct B-US-RS and SWE-RS using the least absolute shrinkage and selection operator regression and tested in an independent validation cohort of 65 masses in 65 patients from center 1 and in an external validation cohort of 28 masses in 28 patients from center 2. The performances of B-US-RS and SWE-RS were assessed using receiver operating characteristic (ROC) analysis and compared with that of radiologist assessment [Breast Imaging Reporting and Data System (BI-RADS)] and quantitative SWE parameters [maximum elasticity ( ), mean elasticity ( ), elasticity ratio ( ), and elastic modulus standard deviation ( )] by using the McNemar test.

RESULTS

The single best-performing quantitative SWE parameter, , had a higher specificity than BI-RADS assessment in the training and independent validation cohorts ( < 0.001 for both). The areas under the ROC curves (AUCs) of B-US-RS and SWE-RS both were 0.99 (95% CI = 0.99-1.00) in the training cohort, 1.00 (95% CI = 1.00-1.00) in the independent validation cohort, and 1.00 (95% CI = 1.00-1.00) in the external validation cohort. The specificities of B-US-RS and SWE-RS were higher than that of in the training ( < 0.001 for both) and independent validation cohorts ( = 0.02 for both).

CONCLUSION

The B-US-RS and SWE-RS outperformed the quantitative SWE parameters and BI-RADS assessment for classifying breast masses. The integration of the deep learning-based radiomics approach would help improve the classification ability of B-mode US and SWE for breast masses.

摘要

目的

剪切波弹性成像(SWE)可提高B型超声(US)对乳腺癌诊断的特异性。然而,基于深度学习的B型超声影像组学特征(B-US-RS)或SWE影像组学特征(SWE-RS)能否进一步提高诊断性能仍有待研究。我们旨在开发B-US-RS和SWE-RS,并确定它们在乳腺肿块分类中的性能。

材料与方法

这项回顾性研究纳入了来自两个中心的291名女性(平均年龄±标准差,40.9±12.3岁),她们有超声可见的乳腺实性肿块,并在2015年6月至2017年7月期间接受了活检和/或手术切除。对中心1的198例患者(训练队列)的198个肿块的B型超声和SWE图像分别进行分割,使用最小绝对收缩和选择算子回归构建B-US-RS和SWE-RS,并在中心1的65例患者的65个肿块的独立验证队列以及中心2的28例患者的28个肿块的外部验证队列中进行测试。使用受试者操作特征(ROC)分析评估B-US-RS和SWE-RS的性能,并通过McNemar检验与放射科医生评估[乳腺影像报告和数据系统(BI-RADS)]以及定量SWE参数[最大弹性( )、平均弹性( )、弹性比( )和弹性模量标准差( )]进行比较。

结果

在训练队列和独立验证队列中,表现最佳的单个定量SWE参数 的特异性均高于BI-RADS评估(两者均P<0.001)。在训练队列中,B-US-RS和SWE-RS的ROC曲线下面积(AUC)均为0.99(95%CI = 0.99 - 1.00),在独立验证队列中为1.00(95%CI = 1.00 - 1.00),在外部验证队列中为1.00(95%CI = 1.00 - 1.00)。在训练队列(两者均P<0.001)和独立验证队列(两者均P = 0.02)中,B-US-RS和SWE-RS的特异性均高于 。

结论

在乳腺肿块分类方面,B-US-RS和SWE-RS优于定量SWE参数和BI-RADS评估。基于深度学习的影像组学方法的整合将有助于提高B型超声和SWE对乳腺肿块的分类能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cadc/7485397/b7fae4b9b7aa/fonc-10-01621-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验