Suppr超能文献

猪脑脑膜的力学特性与建模

Mechanical Characterization and Modeling of the Porcine Cerebral Meninges.

作者信息

Pierrat Baptiste, Carroll Louise, Merle Florence, MacManus David B, Gaul Robert, Lally Caitríona, Gilchrist Michael D, Ní Annaidh Aisling

机构信息

School of Mechanical & Materials Engineering, University College Dublin, Dublin, Ireland.

Mines Saint-Étienne, Centre CIS, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France.

出版信息

Front Bioeng Biotechnol. 2020 Aug 31;8:801. doi: 10.3389/fbioe.2020.00801. eCollection 2020.

Abstract

The cerebral meninges, made up of the , and , is a tri-layer membrane that surrounds the brain and the spinal cord and has an important function in protecting the brain from injury. Understanding its mechanical behavior is important to ensure the accuracy of finite element (FE) head model simulations which are commonly used in the study of traumatic brain injury (TBI). Mechanical characterization of freshly excised porcine (DAM) was achieved using uniaxial tensile testing and bulge inflation testing, highlighting the dependency of the identified parameters on the testing method. Experimental data was fit to the Ogden hyperelastic material model with best fit material parameters of μ = 450 ± 190 kPa and α = 16.55 ± 3.16 for uniaxial testing, and μ = 234 ± 193 kPa and α = 8.19 ± 3.29 for bulge inflation testing. The average ultimate tensile strength of the DAM was 6.91 ± 2.00 MPa (uniaxial), and the rupture stress at burst was 2.08 ± 0.41 MPa (inflation). A structural analysis using small angle light scattering (SALS) revealed that while local regions of highly aligned fibers exist, globally, there is no preferred orientation of fibers and the cerebral DAM can be considered to be structurally isotropic. This confirms the results of the uniaxial mechanical testing which found that there was no statistical difference between samples tested in the longitudinal and transversal direction ( = 0.13 for μ, = 0.87 for α). A finite element simulation of a craniotomy procedure following brain swelling revealed that the mechanical properties of the meninges are important for predicting accurate stress and strain fields in the brain and meninges. Indeed, a simulation using a common linear elastic representation of the meninges was compared to the present material properties (Ogden model) and the intracranial pressure was found to differ by a factor of 3. The current study has provided researchers with primary experimental data on the mechanical behavior of the meninges which will further improve the accuracy of FE head models used in TBI.

摘要

脑膜由[具体结构名称缺失]组成,是一层三层膜,围绕着大脑和脊髓,在保护大脑免受损伤方面具有重要功能。了解其力学行为对于确保有限元(FE)头部模型模拟的准确性很重要,该模拟常用于创伤性脑损伤(TBI)的研究。使用单轴拉伸试验和鼓泡膨胀试验对新鲜切除的猪[具体结构名称缺失](DAM)进行力学表征,突出了所识别参数对测试方法的依赖性。实验数据拟合到Ogden超弹性材料模型,单轴测试的最佳拟合材料参数为μ = 450 ± 190 kPa和α = 16.55 ± 3.16,鼓泡膨胀测试的参数为μ = 234 ± 193 kPa和α = 8.19 ± 3.29。DAM的平均极限抗拉强度为6.91 ± 2.00 MPa(单轴),破裂时的破裂应力为2.08 ± 0.41 MPa(膨胀)。使用小角光散射(SALS)进行的结构分析表明,虽然存在高度排列纤维的局部区域,但总体而言,纤维没有优先取向,脑DAM在结构上可被视为各向同性。这证实了单轴力学测试的结果,即在纵向和横向测试的样品之间没有统计学差异(μ的p值 = 0.13,α的p值 = 0.87)。脑肿胀后开颅手术的有限元模拟表明,脑膜的力学性能对于预测脑和脑膜中的准确应力和应变场很重要。实际上,将使用脑膜常见线性弹性表示的模拟与当前材料特性(Ogden模型)进行比较,发现颅内压相差3倍。当前研究为研究人员提供了关于脑膜力学行为的主要实验数据,这将进一步提高用于TBI的FE头部模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5088/7487364/139b95ccce44/fbioe-08-00801-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验