Suppr超能文献

增强工程化EP-双歧途径的葡萄糖通量以实现高聚羟基丁酸产量的生产。

Enhancing the Glucose Flux of an Engineered EP-Bifido Pathway for High Poly(Hydroxybutyrate) Yield Production.

作者信息

Li Ying, Sun Zhijie, Xu Ya, Luan Yaqi, Xu Jiasheng, Liang Quanfeng, Qi Qingsheng, Wang Qian

机构信息

National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.

Marine Biology Institute, Shantou University, Shantou, China.

出版信息

Front Bioeng Biotechnol. 2020 Aug 27;8:517336. doi: 10.3389/fbioe.2020.517336. eCollection 2020.

Abstract

BACKGROUND

As the greenhouse effect becomes more serious and carbon dioxide emissions continue rise, the application prospects of carbon sequestration or carbon-saving pathways increase. Previously, we constructed an EP-bifido pathway in by combining Embden-Meyerhof-Parnas pathway, pentose phosphate pathway and "bifid shunt" for high acetyl-CoA production. There is much room for improvement in the EP-bifido pathway, including in production of target compounds such as poly(hydroxybutyrate) (PHB).

RESULT

To optimize the EP-bifido pathway and obtain higher PHB yields, we knocked out the specific phosphoenolpyruvate phosphate transferase system (PTS) component II Cglc, encoded by . This severely inhibited the growth and sugar consumption of the bacterial cells. Subsequently, we used multiple automated genome engineering (MAGE) to optimize the ribosome binding site (RBS) sequences of (galactose: H (+) symporter) and (glucokinase gene bank: NC_017262.1), encoding galactose permease and glucokinase, respectively. Growth and glucose uptake were partially restored in the bacteria. Finally, we introduced the glf (UDP-galactopyranose) from mutase sugar transport vector into the host strain genome.

CONCLUSION

After optimizing RBS of , the resulting strain L-6 obtained a PHB yield of 71.9% (mol/mol) and a 76 wt% PHB content using glucose as the carbon source. Then when was integrated into the genome strain L-6, the resulting strain M-6 reached a 5.81 g/L PHB titer and 85.1 wt% PHB content.

摘要

背景

随着温室效应日益严重且二氧化碳排放量持续上升,碳封存或碳节约途径的应用前景不断增加。此前,我们通过结合糖酵解途径、磷酸戊糖途径和“双歧分流”构建了一条EP-双歧途径,用于高产乙酰辅酶A。EP-双歧途径仍有很大的改进空间,包括在生产聚羟基丁酸酯(PHB)等目标化合物方面。

结果

为了优化EP-双歧途径并获得更高的PHB产量,我们敲除了由 编码的特定磷酸烯醇式丙酮酸磷酸转移酶系统(PTS)组分II Cglc。这严重抑制了细菌细胞的生长和糖消耗。随后,我们使用多重自动化基因组工程(MAGE)优化了分别编码半乳糖通透酶和葡萄糖激酶的 (半乳糖:H(+)同向转运体)和 (葡萄糖激酶基因库:NC_017262.1)的核糖体结合位点(RBS)序列。细菌的生长和葡萄糖摄取得到了部分恢复。最后,我们将来自 变位酶糖转运载体的glf(UDP-吡喃半乳糖)引入宿主菌株基因组。

结论

优化 的RBS后,所得菌株L-6以葡萄糖为碳源时,PHB产量达到71.9%(摩尔/摩尔),PHB含量为76 wt%。然后将 整合到基因组菌株L-6中时,所得菌株M-6的PHB滴度达到5.81 g/L,PHB含量为85.1 wt%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/7481327/ca1c6a5bd091/fbioe-08-517336-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验