Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Curr Protoc Mol Biol. 2020 Dec;133(1):e125. doi: 10.1002/cpmb.125.
The lentivirus system enables efficient genetic modification of both dividing and non-dividing cells and therefore is a useful tool for elucidating developmental processes and disease pathogenesis. The development of third-generation lentiviruses has resulted in improved biosafety, low immunogenicity, and substantial packaging capabilities. However, because third-generation lentiviruses require successful co-transfection with four plasmids, this typically means that lower titers are attained. This is problematic, as it is often desirable to produce purified lentiviruses with high titers (>1 × 10 TU/ml), especially for in vivo applications. The manufacturing process for lentiviruses involves several critical experimental factors that can influence titer, purity, and transduction efficiency. Here, we describe a straightforward, stepwise protocol for the reproducible manufacture of high-titer third-generation lentiviruses (1 × 10 to 1 × 10 TU/ml). This optimized protocol enhances transgene expression by use of Lipofectamine transfection and optimized serum replacement medium, a single ultracentrifugation step, use of a sucrose cushion, and addition of a histone deacetylation inhibitor. Furthermore, we provide alternate methods for titration analyses, including functional and genomic integration analyses, using common laboratory techniques such as FACS as well as genomic DNA extraction and qPCR. These optimized methods will be beneficial for investigating developmental processes and disease pathogenesis in vitro and in vivo. © 2020 The Authors. Basic Protocol 1: Lentivirus production Support Protocol: Lentivirus concentration Basic Protocol 2: Lentivirus titration Alternate Protocol 1: Determination of viral titration by FACS analysis Alternate Protocol 2: Determination of viral titration by genome integration analysis.
慢病毒系统能够有效地对分裂和非分裂细胞进行基因修饰,因此是阐明发育过程和疾病发病机制的有用工具。第三代慢病毒的发展导致了更好的生物安全性、低免疫原性和大量的包装能力。然而,由于第三代慢病毒需要与四个质粒成功共转染,这通常意味着滴度较低。这是有问题的,因为通常需要产生高滴度(>1×10 TU/ml)的纯化慢病毒,特别是用于体内应用。慢病毒的制造过程涉及几个关键的实验因素,这些因素会影响滴度、纯度和转导效率。在这里,我们描述了一种简单、逐步的方案,用于可重复地制造高滴度的第三代慢病毒(1×10 到 1×10 TU/ml)。该优化方案通过使用 Lipofectamine 转染和优化的血清替代培养基、单次超速离心步骤、使用蔗糖垫和添加组蛋白去乙酰化抑制剂来增强转基因表达。此外,我们还提供了替代的滴定分析方法,包括使用常见的实验室技术(如 FACS)以及基因组 DNA 提取和 qPCR 进行功能和基因组整合分析。这些优化的方法将有助于在体外和体内研究发育过程和疾病发病机制。 © 2020 作者。基本方案 1:慢病毒生产 支持方案:慢病毒浓缩 基本方案 2:慢病毒滴定 替代方案 1:通过 FACS 分析确定病毒滴度 替代方案 2:通过基因组整合分析确定病毒滴度。