Warren Justin M, Mazzoleni Andre P, Hey Lloyd A
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina.
Hey Clinic for Scoliosis and Spine Surgery, Raleigh, North Carolina.
Int J Spine Surg. 2020 Aug;14(4):502-510. doi: 10.14444/7066. Epub 2020 Jul 31.
This study develops and validates an accurate, computationally efficient, 3-dimensional finite element model (FEM) of the human lumbar spine. Advantages of this simplified model are shown by its application to a disc degeneration study that we demonstrate is completed in one-sixth the time required when using more complicated computed tomography (CT) scan-based models.
An osseoligamentous FEM of the L1-L5 spine is developed using simple shapes based on average anatomical dimensions of key features of the spine rather than CT scan images. Pure moments of 7.5 Nm and a compressive follower load of 1000 N are individually applied to the L1 vertebra. Validation is achieved by comparing rotations and intradiscal pressures to other widely accepted FEMs and in vitro studies. Then degenerative disc properties are modeled and rotations calculated. Required computation times are compared between the model presented in this paper and other models developed using CT scans.
For the validation study, parameter values for a healthy spine were used with the loading conditions described above. Total L1-L5 rotations for flexion, extension, lateral bending, and axial rotation under pure moment loading were calculated as 20.3°, 10.7°, 19.7°, and 10.3°, respectively, and under a compressive follower load, maximum intradiscal pressures were calculated as 0.68 MPa. These values compare favorably with the data used for validation. When studying the effects of disc degeneration, the affected segment is shown to experience decreases in rotations during flexion, extension, and lateral bending (24%-56%), while rotations are shown to increase during axial rotation (14%-40%). Adjacent levels realize relatively minor changes in rotation (1%-6%). This parametric study required 17.5 hours of computation time compared to more than 4 days required if utilizing typical published CT scan-based models, illustrating one of the primary advantages of the model presented in this article.
The FEM presented in this article produces a biomechanical response comparable to widely accepted, complex, CT scan-based models and in vitro studies while requiring much shorter computation times. This makes the model ideal for conducting parametric studies of spinal pathologies and spinal correction techniques.
本研究开发并验证了一种精确、计算高效的人体腰椎三维有限元模型(FEM)。通过将该简化模型应用于椎间盘退变研究,展示了其优势,我们证明完成该研究所需的时间仅为使用更复杂的基于计算机断层扫描(CT)的模型时所需时间的六分之一。
使用基于脊柱关键特征平均解剖尺寸的简单形状,而非CT扫描图像,开发L1 - L5脊柱的骨韧带有限元模型。分别对L1椎体施加7.5 Nm的纯力矩和1000 N的压缩随动载荷。通过将旋转角度和椎间盘内压力与其他广泛接受的有限元模型及体外研究进行比较来实现验证。然后对退变椎间盘特性进行建模并计算旋转角度。比较本文提出的模型与其他使用CT扫描开发的模型所需的计算时间。
对于验证研究,在上述加载条件下使用健康脊柱的参数值。在纯力矩加载下,L1 - L5在屈曲、伸展、侧弯和轴向旋转时的总旋转角度分别计算为20.3°、10.7°、19.7°和10.3°,在压缩随动载荷下,椎间盘内最大压力计算为0.68 MPa。这些值与用于验证的数据相比具有优势。在研究椎间盘退变的影响时,受影响节段在屈曲、伸展和侧弯时的旋转角度减小(24% - 56%),而在轴向旋转时旋转角度增加(14% - 40%)。相邻节段的旋转变化相对较小(1% - 6%)。与使用典型的已发表的基于CT扫描的模型所需的4天多时间相比,该参数研究需要17.5小时的计算时间,这说明了本文提出的模型的一个主要优势。
本文提出的有限元模型产生的生物力学响应与广泛接受的、复杂的基于CT扫描的模型及体外研究相当,同时所需计算时间短得多。这使得该模型非常适合进行脊柱病变和脊柱矫正技术的参数研究。