Suppr超能文献

利用深度学习刻画染色质折叠坐标和图谱。

Characterizing chromatin folding coordinate and landscape with deep learning.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2020 Sep 28;16(9):e1008262. doi: 10.1371/journal.pcbi.1008262. eCollection 2020 Sep.

Abstract

Genome organization is critical for setting up the spatial environment of gene transcription, and substantial progress has been made towards its high-resolution characterization. The underlying molecular mechanism for its establishment is much less understood. We applied a deep-learning approach, variational autoencoder (VAE), to analyze the fluctuation and heterogeneity of chromatin structures revealed by single-cell imaging and to identify a reaction coordinate for chromatin folding. This coordinate connects the seemingly random structures observed in individual cohesin-depleted cells as intermediate states along a folding pathway that leads to the formation of topologically associating domains (TAD). We showed that folding into wild-type-like structures remain energetically favorable in cohesin-depleted cells, potentially as a result of the phase separation between the two chromatin segments with active and repressive histone marks. The energetic stabilization, however, is not strong enough to overcome the entropic penalty, leading to the formation of only partially folded structures and the disappearance of TADs from contact maps upon averaging. Our study suggests that machine learning techniques, when combined with rigorous statistical mechanical analysis, are powerful tools for analyzing structural ensembles of chromatin.

摘要

基因组组织对于建立基因转录的空间环境至关重要,并且在其高分辨率特征描述方面已经取得了重大进展。其建立的基础分子机制却知之甚少。我们应用了一种深度学习方法,变分自动编码器(VAE),来分析单细胞成像揭示的染色质结构的波动和异质性,并确定染色质折叠的反应坐标。该坐标将在无黏连蛋白细胞中观察到的看似随机的结构连接起来,作为沿着导致拓扑关联域(TAD)形成的折叠途径的中间状态。我们表明,折叠成类似于野生型的结构在无黏连蛋白细胞中仍然具有能量优势,这可能是由于具有活性和抑制性组蛋白标记的两个染色质片段之间的相分离所致。然而,能量稳定作用不够强,无法克服熵罚,导致仅形成部分折叠结构,并且在平均化时 TAD 从接触图中消失。我们的研究表明,机器学习技术与严格的统计力学分析相结合,是分析染色质结构集合的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2652/7544120/d631d8ae3a81/pcbi.1008262.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验