Suppr超能文献

染色质的固有和调控相分离组织。

Organization of Chromatin by Intrinsic and Regulated Phase Separation.

机构信息

Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria.

出版信息

Cell. 2019 Oct 3;179(2):470-484.e21. doi: 10.1016/j.cell.2019.08.037. Epub 2019 Sep 19.

Abstract

Eukaryotic chromatin is highly condensed but dynamically accessible to regulation and organized into subdomains. We demonstrate that reconstituted chromatin undergoes histone tail-driven liquid-liquid phase separation (LLPS) in physiologic salt and when microinjected into cell nuclei, producing dense and dynamic droplets. Linker histone H1 and internucleosome linker lengths shared across eukaryotes promote phase separation of chromatin, tune droplet properties, and coordinate to form condensates of consistent density in manners that parallel chromatin behavior in cells. Histone acetylation by p300 antagonizes chromatin phase separation, dissolving droplets in vitro and decreasing droplet formation in nuclei. In the presence of multi-bromodomain proteins, such as BRD4, highly acetylated chromatin forms a new phase-separated state with droplets of distinct physical properties, which can be immiscible with unmodified chromatin droplets, mimicking nuclear chromatin subdomains. Our data suggest a framework, based on intrinsic phase separation of the chromatin polymer, for understanding the organization and regulation of eukaryotic genomes.

摘要

真核染色质高度浓缩,但可动态调控并组织成亚区。我们证明,重组染色质在生理盐度下和微注射到细胞核内时,会发生组蛋白尾部驱动的液-液相分离(LLPS),产生密集且动态的液滴。在整个真核生物中共享的连接组蛋白 H1 和核小体间连接长度促进染色质的相分离,调节液滴特性,并协调形成具有一致密度的凝聚体,这种方式与细胞中染色质的行为相似。p300 的组蛋白乙酰化拮抗染色质相分离,在体外溶解液滴,并减少核内液滴的形成。在多溴结构域蛋白(如 BRD4)存在的情况下,高度乙酰化的染色质会形成一种具有不同物理特性的新的相分离状态,这种状态可能与未修饰的染色质液滴不混溶,模拟核染色质亚区。我们的数据表明,基于染色质聚合物的固有相分离,为理解真核基因组的组织和调控提供了一个框架。

相似文献

1
Organization of Chromatin by Intrinsic and Regulated Phase Separation.
Cell. 2019 Oct 3;179(2):470-484.e21. doi: 10.1016/j.cell.2019.08.037. Epub 2019 Sep 19.
4
Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization.
Biophys J. 2020 Feb 4;118(3):753-764. doi: 10.1016/j.bpj.2019.12.022. Epub 2019 Dec 31.
5
Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains.
J Biol Chem. 2025 Mar;301(3):108289. doi: 10.1016/j.jbc.2025.108289. Epub 2025 Feb 10.
6
Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation.
J Biol Chem. 2019 Feb 1;294(5):1451-1463. doi: 10.1074/jbc.RA118.006620. Epub 2018 Dec 4.
7
Histone H1 is a specific repressor of core histone acetylation in chromatin.
Mol Cell Biol. 2000 Jan;20(2):523-9. doi: 10.1128/MCB.20.2.523-529.2000.
8
Interplay of condensation and chromatin binding underlies BRD4 targeting.
Mol Biol Cell. 2024 Jun 1;35(6):ar88. doi: 10.1091/mbc.E24-01-0046. Epub 2024 Apr 24.
9
BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin.
Nat Struct Mol Biol. 2016 Jun;23(6):540-8. doi: 10.1038/nsmb.3228. Epub 2016 May 9.

引用本文的文献

1
Unveiling structural and dynamical features of chromatin using NMR spectroscopy.
Magn Reson Lett. 2024 Jul 18;4(4):200153. doi: 10.1016/j.mrl.2024.200153. eCollection 2024 Nov.
2
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
3
Imbalanced chromatin distribution in cellular senescence specifies paraspeckle dynamics.
Genome Biol. 2025 Sep 2;26(1):264. doi: 10.1186/s13059-025-03757-6.
4
The emerging sequence grammar of 3D genome organisation.
Hum Genet. 2025 Aug 25. doi: 10.1007/s00439-025-02772-8.
6
Heterogeneity as a feature: unraveling chromatin's role in nuclear mechanics.
Nucleus. 2025 Dec;16(1):2545037. doi: 10.1080/19491034.2025.2545037. Epub 2025 Aug 21.
7
10
Differential Crosslinking and Contractile Motors Drive Nuclear Chromatin Compaction.
bioRxiv. 2025 Jul 27:2025.07.24.666416. doi: 10.1101/2025.07.24.666416.

本文引用的文献

1
Two major mechanisms of chromosome organization.
Curr Opin Cell Biol. 2019 Jun;58:142-152. doi: 10.1016/j.ceb.2019.05.001. Epub 2019 Jun 20.
2
Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2.
Genes Dev. 2019 Jul 1;33(13-14):799-813. doi: 10.1101/gad.326488.119. Epub 2019 Jun 6.
3
Heterochromatin drives compartmentalization of inverted and conventional nuclei.
Nature. 2019 Jun;570(7761):395-399. doi: 10.1038/s41586-019-1275-3. Epub 2019 Jun 5.
4
Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays.
J Biol Chem. 2019 Mar 15;294(11):4233-4246. doi: 10.1074/jbc.RA118.006412. Epub 2019 Jan 10.
5
Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains.
Cell. 2018 Dec 13;175(7):1842-1855.e16. doi: 10.1016/j.cell.2018.10.042. Epub 2018 Nov 15.
7
Highly disordered histone H1-DNA model complexes and their condensates.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11964-11969. doi: 10.1073/pnas.1805943115. Epub 2018 Oct 9.
8
Mediator and RNA polymerase II clusters associate in transcription-dependent condensates.
Science. 2018 Jul 27;361(6400):412-415. doi: 10.1126/science.aar4199. Epub 2018 Jun 21.
9
Coactivator condensation at super-enhancers links phase separation and gene control.
Science. 2018 Jul 27;361(6400). doi: 10.1126/science.aar3958. Epub 2018 Jun 21.
10
Imaging dynamic and selective low-complexity domain interactions that control gene transcription.
Science. 2018 Jul 27;361(6400). doi: 10.1126/science.aar2555. Epub 2018 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验