Suppr超能文献

用最小作用路径量化表观遗传稳定性。

Quantifying epigenetic stability with minimum action paths.

作者信息

Sood Amogh, Zhang Bin

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev E. 2020 Jun;101(6-1):062409. doi: 10.1103/PhysRevE.101.062409.

Abstract

Chromatin can adopt multiple stable, heritable states with distinct histone modifications and varying levels of gene expression. Insight on the stability and maintenance of such epigenetic states can be gained by mathematical modeling of stochastic reaction networks for histone modifications. Analytical results for the kinetic networks are particularly valuable. Compared to computationally demanding numerical simulations, they often are more convenient at evaluating the robustness of conclusions with respect to model parameters. In this communication, we developed a second-quantization-based approach that can be used to analyze discrete stochastic models with a fixed, finite number of particles using a representation of the SU(2) algebra. We applied the approach to a kinetic model of chromatin states that captures the feedback between nucleosomes and the enzymes conferring histone modifications. Using a path-integral expression for the transition probability, we computed the epigenetic landscape that helps to identify the emergence of bistability and the most probable path connecting the two steady states. We anticipate the generalizability of the approach will make it useful for studying more complicated models that couple epigenetic modifications with transcription factors and chromatin structure.

摘要

染色质可以呈现多种稳定的、可遗传的状态,具有不同的组蛋白修饰和不同水平的基因表达。通过对组蛋白修饰的随机反应网络进行数学建模,可以深入了解这些表观遗传状态的稳定性和维持机制。动力学网络的分析结果尤为重要。与计算要求较高的数值模拟相比,在评估结论相对于模型参数的稳健性时,分析结果通常更为便捷。在本论文中,我们开发了一种基于二次量子化的方法,该方法可用于使用SU(2)代数表示来分析具有固定有限数量粒子的离散随机模型。我们将该方法应用于染色质状态的动力学模型,该模型捕捉了核小体与赋予组蛋白修饰的酶之间的反馈。利用跃迁概率的路径积分表达式,我们计算了表观遗传景观,有助于识别双稳态的出现以及连接两个稳态的最可能路径。我们预计该方法的通用性将使其可用于研究将表观遗传修饰与转录因子和染色质结构相结合的更复杂模型。

相似文献

1
Quantifying epigenetic stability with minimum action paths.
Phys Rev E. 2020 Jun;101(6-1):062409. doi: 10.1103/PhysRevE.101.062409.
2
Dynamical phase transition in models that couple chromatin folding with histone modifications.
Phys Rev E. 2024 May;109(5-1):054411. doi: 10.1103/PhysRevE.109.054411.
3
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
4
Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods.
Front Genet. 2021 Jan 22;11:636724. doi: 10.3389/fgene.2020.636724. eCollection 2020.
6
Investigating Histone Modification Dynamics by Mechanistic Computational Modeling.
Methods Mol Biol. 2022;2529:441-473. doi: 10.1007/978-1-0716-2481-4_19.
7
Interplay between different epigenetic modifications and mechanisms.
Adv Genet. 2010;70:101-41. doi: 10.1016/B978-0-12-380866-0.60005-8.
8
Physical modeling of the heritability and maintenance of epigenetic modifications.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20423-20429. doi: 10.1073/pnas.1920499117. Epub 2020 Aug 10.
9
Inheritance of epigenetic chromatin silencing.
J Theor Biol. 2009 May 7;258(1):112-20. doi: 10.1016/j.jtbi.2008.12.021. Epub 2008 Dec 31.

引用本文的文献

1
Role of diffusion and reaction of the constituents in spreading of histone modification marks.
PLoS Comput Biol. 2024 Jul 11;20(7):e1012235. doi: 10.1371/journal.pcbi.1012235. eCollection 2024 Jul.
2
Preserving condensate structure and composition by lowering sequence complexity.
Biophys J. 2024 Jul 2;123(13):1815-1826. doi: 10.1016/j.bpj.2024.05.026. Epub 2024 May 31.
3
Multiscale modeling of genome organization with maximum entropy optimization.
J Chem Phys. 2021 Jul 7;155(1):010901. doi: 10.1063/5.0044150.
4
A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolism-EMT Network.
Adv Sci (Weinh). 2021 Mar 18;8(10):2003133. doi: 10.1002/advs.202003133. eCollection 2021 May.
5
Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods.
Front Genet. 2021 Jan 22;11:636724. doi: 10.3389/fgene.2020.636724. eCollection 2020.
6
Characterizing chromatin folding coordinate and landscape with deep learning.
PLoS Comput Biol. 2020 Sep 28;16(9):e1008262. doi: 10.1371/journal.pcbi.1008262. eCollection 2020 Sep.

本文引用的文献

1
Small protein number effects in stochastic models of autoregulated bursty gene expression.
J Chem Phys. 2020 Feb 28;152(8):084115. doi: 10.1063/1.5144578.
2
Theory of Active Chromatin Remodeling.
Phys Rev Lett. 2019 Nov 15;123(20):208102. doi: 10.1103/PhysRevLett.123.208102.
3
Predicting three-dimensional genome organization with chromatin states.
PLoS Comput Biol. 2019 Jun 10;15(6):e1007024. doi: 10.1371/journal.pcbi.1007024. eCollection 2019 Jun.
4
Critical role of histone tail entropy in nucleosome unwinding.
J Chem Phys. 2019 May 14;150(18):185103. doi: 10.1063/1.5085663.
5
Learning the Formation Mechanism of Domain-Level Chromatin States with Epigenomics Data.
Biophys J. 2019 May 21;116(10):2047-2056. doi: 10.1016/j.bpj.2019.04.006. Epub 2019 Apr 11.
6
Linear mapping approximation of gene regulatory networks with stochastic dynamics.
Nat Commun. 2018 Aug 17;9(1):3305. doi: 10.1038/s41467-018-05822-0.
9
Stem cell differentiation as a many-body problem.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10185-90. doi: 10.1073/pnas.1408561111. Epub 2014 Jun 19.
10
Statistical mechanics model for the dynamics of collective epigenetic histone modification.
Phys Rev Lett. 2014 Feb 14;112(6):068101. doi: 10.1103/PhysRevLett.112.068101. Epub 2014 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验