Sood Amogh, Zhang Bin
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E. 2020 Jun;101(6-1):062409. doi: 10.1103/PhysRevE.101.062409.
Chromatin can adopt multiple stable, heritable states with distinct histone modifications and varying levels of gene expression. Insight on the stability and maintenance of such epigenetic states can be gained by mathematical modeling of stochastic reaction networks for histone modifications. Analytical results for the kinetic networks are particularly valuable. Compared to computationally demanding numerical simulations, they often are more convenient at evaluating the robustness of conclusions with respect to model parameters. In this communication, we developed a second-quantization-based approach that can be used to analyze discrete stochastic models with a fixed, finite number of particles using a representation of the SU(2) algebra. We applied the approach to a kinetic model of chromatin states that captures the feedback between nucleosomes and the enzymes conferring histone modifications. Using a path-integral expression for the transition probability, we computed the epigenetic landscape that helps to identify the emergence of bistability and the most probable path connecting the two steady states. We anticipate the generalizability of the approach will make it useful for studying more complicated models that couple epigenetic modifications with transcription factors and chromatin structure.
染色质可以呈现多种稳定的、可遗传的状态,具有不同的组蛋白修饰和不同水平的基因表达。通过对组蛋白修饰的随机反应网络进行数学建模,可以深入了解这些表观遗传状态的稳定性和维持机制。动力学网络的分析结果尤为重要。与计算要求较高的数值模拟相比,在评估结论相对于模型参数的稳健性时,分析结果通常更为便捷。在本论文中,我们开发了一种基于二次量子化的方法,该方法可用于使用SU(2)代数表示来分析具有固定有限数量粒子的离散随机模型。我们将该方法应用于染色质状态的动力学模型,该模型捕捉了核小体与赋予组蛋白修饰的酶之间的反馈。利用跃迁概率的路径积分表达式,我们计算了表观遗传景观,有助于识别双稳态的出现以及连接两个稳态的最可能路径。我们预计该方法的通用性将使其可用于研究将表观遗传修饰与转录因子和染色质结构相结合的更复杂模型。