Suppr超能文献

温室气体排放来自无机和有机肥料的生产和使用:排放系数及其变异性综述。

Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability.

机构信息

BioEngine - Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 Ave. de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.

出版信息

J Environ Manage. 2020 Dec 15;276:111211. doi: 10.1016/j.jenvman.2020.111211. Epub 2020 Sep 25.

Abstract

Fertilizers have become an essential part of our global food supply chain and are necessary to sustain our growing population. However, fertilizers can also contribute to greenhouse gas (GHG) emissions, along with other potential nutrient losses in the environment, e.g. through leaching. To reduce this environmental impact, tools such as life cycle assessments and decision support systems are being used to aid in selecting sustainable fertilization scenarios. These scenarios often include organic waste-derived amendments, such as manures, composts and digestates. To produce an accurate assessment and comparison of potential fertilization scenarios, these tools require emission factors (EFs) that are used to estimate GHG emissions and that are an integral part of these analyses. However, such EFs seem to be very variable in nature, thereby often resulting in high uncertainty on the outcomes of the analyses. This review aims to identify ranges and sources of variability in EFs to provide a better understanding of the potential uncertainty on the outcomes, as well as to provide recommendations for selecting EFs for future studies. As such, an extensive review of the literature on GHG emissions from production, storage, transportation and application of synthetic fertilizers (N, P, K), composts, digestates and manures was performed. This paper highlights the high variability that is present in emissions data and confirms the great impact of this uncertainty on the quality and validity of GHG predictions related to fertilizers. Variability in EFs stem from the energy source used for production, operating conditions, storage systems, crop and soil type, soil nutrient content, amount and method of fertilizer application, soil bacterial community, irrigation method, among others. Furthermore, a knowledge gap exists related to EFs for potassium fertilizers and waste valorization (anaerobic digestion/composting) processes. Overall, based on this review, it is recommended to determine EFs on a case by case basis when possible and to use uncertainty analyses as a tool to better understand the impact of EF variability.

摘要

肥料已成为全球粮食供应链的重要组成部分,是维持不断增长的人口的必要条件。然而,肥料也会导致温室气体(GHG)排放,以及环境中其他潜在养分损失,例如通过淋溶。为了减少这种环境影响,正在使用生命周期评估和决策支持系统等工具来帮助选择可持续的施肥方案。这些方案通常包括有机废物衍生的改良剂,例如粪肥、堆肥和消化物。为了对潜在施肥方案进行准确评估和比较,这些工具需要使用排放因子(EFs)来估算 GHG 排放,这是这些分析的一个组成部分。然而,这些 EF 似乎在性质上非常多变,因此经常导致分析结果的不确定性很高。本综述旨在确定 EF 的范围和变异性来源,以更好地了解结果的潜在不确定性,并为未来研究选择 EF 提供建议。为此,对合成肥料(N、P、K)、堆肥、消化物和粪肥的生产、储存、运输和应用以及 composts、digestates 和 manure 的 GHG 排放的文献进行了广泛的回顾。本文强调了排放数据中存在的高度可变性,并证实了这种不确定性对与肥料相关的 GHG 预测的质量和有效性的巨大影响。EF 的变异性源于生产、操作条件、储存系统、作物和土壤类型、土壤养分含量、肥料施用量和方法、土壤细菌群落、灌溉方法等的能源使用情况。此外,在钾肥料和废物增值(厌氧消化/堆肥)过程的 EF 方面还存在知识差距。总体而言,基于本综述,建议在可能的情况下根据具体情况确定 EF,并使用不确定性分析作为更好地了解 EF 变异性影响的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验