Salvador-Porroche Alba, Sangiao Soraya, Philipp Patrick, Cea Pilar, Teresa José María De
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
Nanomaterials (Basel). 2020 Sep 24;10(10):1906. doi: 10.3390/nano10101906.
The Focused Ion Beam Induced Deposition (FIBID) under cryogenic conditions (Cryo-FIBID) technique is based on obtaining a condensed layer of precursor molecules by cooling the substrate below the condensation temperature of the gaseous precursor material. This condensed layer is irradiated with ions according to a desired pattern and, subsequently, the substrate is heated above the precursor condensation temperature, revealing the deposits with the shape of the exposed pattern. In this contribution, the fast growth of Pt-C deposits by Cryo-FIBID is demonstrated. Here, we optimize various parameters of the process in order to obtain deposits with the lowest-possible electrical resistivity. Optimized 30 nm-thick Pt-C deposits are obtained using ion irradiation area dose of 120 μC/cm at 30 kV. This finding represents a substantial increment in the growth rate when it is compared with deposits of the same thickness fabricated by standard FIBID at room temperature (40 times enhancement). The value of the electrical resistivity in optimized deposits (4 × 10 µΩ cm) is suitable to perform electrical contacts to certain materials. As a proof of concept of the potential applications of this technology, a 100 µm × 100 µm pattern is carried out in only 43 s of ion exposure (area dose of 23 μC/cm), to be compared with 2.5 h if grown by standard FIBID at room temperature. The ion trajectories and the deposit composition have been simulated using a binary-collision-approximation Monte Carlo code, providing a solid basis for the understanding of the experimental results.
低温条件下的聚焦离子束诱导沉积(Cryo-FIBID)技术基于将衬底冷却至气态前驱体材料的冷凝温度以下,从而获得前驱体分子的凝聚层。按照所需图案用离子辐照该凝聚层,随后将衬底加热至高于前驱体冷凝温度,从而显现出具有暴露图案形状的沉积物。在本论文中,展示了通过Cryo-FIBID实现的Pt-C沉积物的快速生长。在此,我们优化该工艺的各种参数,以获得具有尽可能低电阻率的沉积物。使用30 kV下120 μC/cm的离子辐照面积剂量,获得了优化后的约30 nm厚的Pt-C沉积物。与室温下通过标准FIBID制备的相同厚度的沉积物相比,这一发现代表了生长速率的大幅提高(提高了40倍)。优化后的沉积物的电阻率值(约4×10 μΩ·cm)适合与某些材料进行电接触。作为该技术潜在应用概念验证,仅在43 s的离子曝光时间(面积剂量为23 μC/cm)内就完成了一个100 µm×100 µm的图案,而在室温下通过标准FIBID生长则需要2.5 h。使用二元碰撞近似蒙特卡罗代码模拟了离子轨迹和沉积物成分,为理解实验结果提供了坚实的基础。