Suppr超能文献

不同的机制导致了蜜蜂和人类的内隐视觉统计学习。

Different mechanisms underlie implicit visual statistical learning in honey bees and humans.

机构信息

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.

出版信息

Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25923-25934. doi: 10.1073/pnas.1919387117. Epub 2020 Sep 28.

Abstract

The ability of developing complex internal representations of the environment is considered a crucial antecedent to the emergence of humans' higher cognitive functions. Yet it is an open question whether there is any fundamental difference in how humans and other good visual learner species naturally encode aspects of novel visual scenes. Using the same modified visual statistical learning paradigm and multielement stimuli, we investigated how human adults and honey bees () encode spontaneously, without dedicated training, various statistical properties of novel visual scenes. We found that, similarly to humans, honey bees automatically develop a complex internal representation of their visual environment that evolves with accumulation of new evidence even without a targeted reinforcement. In particular, with more experience, they shift from being sensitive to statistics of only elemental features of the scenes to relying on co-occurrence frequencies of elements while losing their sensitivity to elemental frequencies, but they never encode automatically the predictivity of elements. In contrast, humans involuntarily develop an internal representation that includes single-element and co-occurrence statistics, as well as information about the predictivity between elements. Importantly, capturing human visual learning results requires a probabilistic chunk-learning model, whereas a simple fragment-based memory-trace model that counts occurrence summary statistics is sufficient to replicate honey bees' learning behavior. Thus, humans' sophisticated encoding of sensory stimuli that provides intrinsic sensitivity to predictive information might be one of the fundamental prerequisites of developing higher cognitive abilities.

摘要

发展出复杂的环境内部表示的能力被认为是人类更高认知功能出现的关键前提。然而,人类和其他善于视觉学习的物种在自然编码新视觉场景方面是否存在任何根本差异,这仍是一个悬而未决的问题。使用相同的改进视觉统计学习范式和多元素刺激,我们研究了成年人类和蜜蜂如何在没有专门训练的情况下自发地、自动地编码新视觉场景的各种统计特性。我们发现,与人类类似,蜜蜂会自动生成其视觉环境的复杂内部表示,即使没有目标强化,随着新证据的积累,这种内部表示也会不断发展。特别是,随着经验的增加,它们从对场景元素特征的统计信息敏感转变为依赖元素的共现频率,同时失去对元素频率的敏感性,但它们从不自动编码元素的可预测性。相比之下,人类会无意识地发展出一种内部表示,其中包括单一元素和共现统计信息,以及元素之间的可预测性信息。重要的是,捕捉人类视觉学习的结果需要一个概率分块学习模型,而一个简单的基于片段的记忆痕迹模型,只需计算出现的摘要统计信息,就足以复制蜜蜂的学习行为。因此,人类对感官刺激的复杂编码提供了对预测信息的内在敏感性,这可能是发展更高认知能力的基本前提之一。

相似文献

引用本文的文献

6
Spontaneous relational and object similarity in wild bumblebees.野生大黄蜂的自发关系和对象相似性。
Biol Lett. 2022 Aug;18(8):20220253. doi: 10.1098/rsbl.2022.0253. Epub 2022 Aug 31.
9
Neural processes underlying statistical learning for speech segmentation in dogs.犬类语音分割的统计学习的神经过程。
Curr Biol. 2021 Dec 20;31(24):5512-5521.e5. doi: 10.1016/j.cub.2021.10.017. Epub 2021 Oct 29.
10
Einstein, von Frisch and the honeybee: a historical letter comes to light.爱因斯坦、冯·弗里希与蜜蜂:一封历史信件公诸于世。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021 Jul;207(4):449-456. doi: 10.1007/s00359-021-01490-6. Epub 2021 May 10.

本文引用的文献

2
4
An Insect's Sense of Number.昆虫的数字感
Trends Cogn Sci. 2019 Sep;23(9):720-722. doi: 10.1016/j.tics.2019.06.010. Epub 2019 Jul 20.
6
Honeybees foraging for numbers.蜜蜂为数字觅食。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Jun;205(3):439-450. doi: 10.1007/s00359-019-01344-2. Epub 2019 May 27.
7
9
Abstract concept learning in a simple neural network inspired by the insect brain.受昆虫大脑启发的简单神经网络中的抽象概念学习。
PLoS Comput Biol. 2018 Sep 17;14(9):e1006435. doi: 10.1371/journal.pcbi.1006435. eCollection 2018 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验