Suppr超能文献

通过将聚光光伏概念与双光阳极相结合提高量子点敏化太阳能电池的功率转换效率

Boosting Power Conversion Efficiency of Quantum Dot-Sensitized Solar Cells by Integrating Concentrating Photovoltaic Concept with Double Photoanodes.

作者信息

Xu Pei, Chang Xiaopeng, Liu Runru, Wang Liying, Li Xuesong, Zhang Xueyu, Yang Xijia, Wang Dejun, Lü Wei

机构信息

Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130012, People's Republic of China.

Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China.

出版信息

Nanoscale Res Lett. 2020 Sep 29;15(1):188. doi: 10.1186/s11671-020-03424-8.

Abstract

Despite great efforts dedicated to enhance power conversion efficiency (PCE) of quantum dot-sensitized solar cells (QDSSCs) in the past two decades, the efficiency of QDSSCs is still far behind its theoretical value. The present approaches for improving PCE are mainly focused on tailoring the bandgap of QDs to broadening light-harvesting and optimizing interfaces of component parts. Herein, a new solar cell architecture is proposed by integrating concentrating solar cell (CPV) concept into QDSSCs with double photoanode design. The CuS mesh is used as a counter electrode and sandwiched between two photoanodes. This designed battery structure can increase the PCE by 260% compared with a single photoanode. With the most extensively used CdS/CdSe QD sensitizers, a champion PCE of 8.28% (V = 0.629 V, J = 32.247 mA cm2) was achieved. This is mainly due to the increase in J due to the double photoanode design and adoption of the CPV concept. In addition, another reason is that concentrated sunshine illumination induced a photothermal effect, accelerating the preceding chemical reactions associated with the conversion of polysulfide species. The cell fabrication and design reported here provides a new insight for further development of QDSSCs.

摘要

尽管在过去二十年里人们付出了巨大努力来提高量子点敏化太阳能电池(QDSSCs)的功率转换效率(PCE),但QDSSCs的效率仍远低于其理论值。目前提高PCE的方法主要集中在调整量子点的带隙以拓宽光捕获范围以及优化组件部件的界面。在此,通过将聚光太阳能电池(CPV)概念集成到具有双光阳极设计的QDSSCs中,提出了一种新的太阳能电池架构。硫化铜网用作对电极并夹在两个光阳极之间。与单光阳极相比,这种设计的电池结构可使PCE提高260%。使用最广泛的硫化镉/硒化镉量子点敏化剂时,实现了8.28%(V = 0.629 V,J = 32.247 mA cm2)的最佳PCE。这主要是由于双光阳极设计和采用CPV概念导致电流密度(J)增加。此外,另一个原因是聚光阳光照射引起光热效应,加速了与多硫化物物种转化相关的先前化学反应。这里报道的电池制造和设计为QDSSCs的进一步发展提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7739/7524932/2b686052b696/11671_2020_3424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验