Suppr超能文献

利用深度学习改进定量磁共振成像

Improving Quantitative Magnetic Resonance Imaging Using Deep Learning.

作者信息

Liu Fang

机构信息

Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

Semin Musculoskelet Radiol. 2020 Aug;24(4):451-459. doi: 10.1055/s-0040-1709482. Epub 2020 Sep 29.

Abstract

Deep learning methods have shown promising results for accelerating quantitative musculoskeletal (MSK) magnetic resonance imaging (MRI) for T2 and T1ρ relaxometry. These methods have been shown to improve musculoskeletal tissue segmentation on parametric maps, allowing efficient and accurate T2 and T1ρ relaxometry analysis for monitoring and predicting MSK diseases. Deep learning methods have shown promising results for disease detection on quantitative MRI with diagnostic performance superior to conventional machine-learning methods for identifying knee osteoarthritis.

摘要

深度学习方法已在加速用于T2和T1ρ弛豫测量的定量肌肉骨骼(MSK)磁共振成像(MRI)方面显示出有前景的结果。这些方法已被证明可改善参数图上的肌肉骨骼组织分割,从而实现高效且准确的T2和T1ρ弛豫测量分析,用于监测和预测MSK疾病。深度学习方法在定量MRI疾病检测方面已显示出有前景的结果,其诊断性能优于用于识别膝关节骨关节炎的传统机器学习方法。

相似文献

1
Improving Quantitative Magnetic Resonance Imaging Using Deep Learning.利用深度学习改进定量磁共振成像
Semin Musculoskelet Radiol. 2020 Aug;24(4):451-459. doi: 10.1055/s-0040-1709482. Epub 2020 Sep 29.
3
Improving the Speed of MRI with Artificial Intelligence.利用人工智能提高磁共振成像速度
Semin Musculoskelet Radiol. 2020 Feb;24(1):12-20. doi: 10.1055/s-0039-3400265. Epub 2020 Jan 28.
6
Quantitative Musculoskeletal Ultrasound.定量肌肉骨骼超声。
Semin Musculoskelet Radiol. 2020 Aug;24(4):367-374. doi: 10.1055/s-0040-1709720. Epub 2020 Sep 29.

本文引用的文献

9
Artificial intelligence to diagnose meniscus tears on MRI.人工智能诊断 MRI 半月板撕裂
Diagn Interv Imaging. 2019 Apr;100(4):243-249. doi: 10.1016/j.diii.2019.02.007. Epub 2019 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验