Liu Fang
Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
Semin Musculoskelet Radiol. 2020 Aug;24(4):451-459. doi: 10.1055/s-0040-1709482. Epub 2020 Sep 29.
Deep learning methods have shown promising results for accelerating quantitative musculoskeletal (MSK) magnetic resonance imaging (MRI) for T2 and T1ρ relaxometry. These methods have been shown to improve musculoskeletal tissue segmentation on parametric maps, allowing efficient and accurate T2 and T1ρ relaxometry analysis for monitoring and predicting MSK diseases. Deep learning methods have shown promising results for disease detection on quantitative MRI with diagnostic performance superior to conventional machine-learning methods for identifying knee osteoarthritis.
深度学习方法已在加速用于T2和T1ρ弛豫测量的定量肌肉骨骼(MSK)磁共振成像(MRI)方面显示出有前景的结果。这些方法已被证明可改善参数图上的肌肉骨骼组织分割,从而实现高效且准确的T2和T1ρ弛豫测量分析,用于监测和预测MSK疾病。深度学习方法在定量MRI疾病检测方面已显示出有前景的结果,其诊断性能优于用于识别膝关节骨关节炎的传统机器学习方法。