Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Muscle Research Center Erlangen, MURCE, Erlangen, Germany.
Antioxid Redox Signal. 2021 Jul 20;35(3):143-162. doi: 10.1089/ars.2020.8193. Epub 2020 Nov 12.
Heart failure is among the leading causes of morbidity worldwide with a 5-year mortality rate of ∼50%. Therefore, major efforts are invested to reduce heart damage upon injury or maintain and at best restore heart function. In clinical trials, acellular constructs succeeded in improving cardiac function by stabilizing the infarcted heart. In addition, strategies utilizing stem-cell-derived cardiomyocytes have been developed to improve heart function postmyocardial infarction in small and large animal models. These strategies range from injection of cell-laden hydrogels to unstructured hydrogel-based and complex biofabricated cardiac patches. Importantly, novel methods have been developed to promote differentiation of stem-cell-derived cardiomyocytes to prevascularized cardiac patches. Despite substantial progress in vascularization strategies for heart-on-the-chip technologies, little advance has been made in generating vascularized cardiac patches with clinically relevant dimensions. In addition, proper electrical coupling between engineered and host tissue to prevent and/or eliminate arrhythmia remains an unresolved issue. Finally, despite advanced approaches to include hierarchical structures in cardiac tissues, engineered tissues do not generate forces in the range of native adult cardiac tissue. It involves utilizing novel materials and advancing biofabrication strategies to generate prevascularized three-dimensional multicellular constructs of clinical relevant size; inclusion of hierarchical structures, electroconductive materials, and biologically active factors to enhance cardiomyocyte differentiation for optimized force generation and vascularization; optimization of bioreactor strategies for tissue maturation. 35, 143-162.
心力衰竭是全球主要的发病率原因之一,其 5 年死亡率约为 50%。因此,人们投入了大量努力来减少损伤后心脏的损害,或维持和最好地恢复心脏功能。在临床试验中,去细胞构建体通过稳定梗死心脏成功改善了心脏功能。此外,利用干细胞衍生的心肌细胞的策略已被开发用于改善小型和大型动物模型中心梗后的心脏功能。这些策略范围从注射细胞负载的水凝胶到无结构的基于水凝胶的和复杂的生物制造的心脏贴片。重要的是,已经开发了新的方法来促进干细胞衍生的心肌细胞向预血管化的心脏贴片的分化。尽管在心脏芯片技术的血管化策略方面取得了重大进展,但在生成具有临床相关尺寸的血管化心脏贴片方面几乎没有进展。此外,在工程组织和宿主组织之间进行适当的电耦接以防止和/或消除心律失常仍然是一个未解决的问题。最后,尽管采用了先进的方法将分层结构纳入心脏组织中,但工程组织产生的力无法达到成年人心肌组织的范围。它涉及利用新型材料和推进生物制造策略来生成具有临床相关尺寸的预血管化三维多细胞构建体;包括分层结构、导电材料和生物活性因子以增强心肌细胞分化,从而实现优化的力产生和血管化;优化组织成熟的生物反应器策略。35, 143-162。