Suppr超能文献

利用图神经网络对新冠病毒进行药物重新利用并整合多种证据

Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence.

作者信息

Hsieh Kanglin, Wang Yinyin, Chen Luyao, Zhao Zhongming, Savitz Sean, Jiang Xiaoqian, Tang Jing, Kim Yejin

出版信息

ArXiv. 2022 Feb 1:arXiv:2009.10931v3.

Abstract

Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment. This is a post-peer-review, pre-copyedit version of an article published in Scientific Reports The final authenticated version is available online at: https://www.nature.com/articles/s41598-021-02353-5.

摘要

在由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染引发的2019年新型冠状病毒病(COVID-19)大流行期间,针对预防和治疗的大量药物研究迅速展开,但迄今为止这些努力均未成功。我们的目标是通过一个药物再利用流程来确定可再利用药物的优先级,该流程系统整合了多种SARS-CoV-2与药物的相互作用、深度图神经网络以及基于体外/人群的验证。我们首先通过CTDbase收集了所有参与COVID-19患者治疗的可用药物(n = 3635种)。我们基于病毒诱饵、宿主基因、通路、药物和表型之间的相互作用构建了一个SARS-CoV-2知识图谱。采用深度图神经网络方法根据生物相互作用推导候选药物的表征。我们利用临床试验历史对候选药物进行优先级排序,然后通过其基因图谱、体外实验疗效和电子健康记录对其进行验证。我们重点介绍了包括阿奇霉素、阿托伐他汀、阿司匹林、对乙酰氨基酚和沙丁胺醇在内的前22种药物。我们进一步确定了可能协同靶向COVID-19的药物组合。总之,我们证明了广泛的相互作用、深度神经网络和严格验证的整合能够促进快速识别用于COVID-19治疗的候选药物。这是一篇发表在《科学报告》上的文章的同行评审后、排版前版本。最终审定版本可在以下网址在线获取:https://www.nature.com/articles/s41598-021-02353-5

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验