Suppr超能文献

利用图神经网络和协调多种证据进行 COVID-19 的药物再利用。

Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence.

机构信息

Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

出版信息

Sci Rep. 2021 Nov 30;11(1):23179. doi: 10.1038/s41598-021-02353-5.

Abstract

Since the 2019 novel coronavirus disease (COVID-19) outbreak in 2019 and the pandemic continues for more than one year, a vast amount of drug research has been conducted and few of them got FDA approval. Our objective is to prioritize repurposable drugs using a pipeline that systematically integrates the interaction between COVID-19 and drugs, deep graph neural networks, and in vitro/population-based validations. We first collected all available drugs (n = 3635) related to COVID-19 patient treatment through CTDbase. We built a COVID-19 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate drug's representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and population-based treatment effect. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and multiple evidence can facilitate the rapid identification of candidate drugs for COVID-19 treatment.

摘要

自 2019 年新型冠状病毒病(COVID-19)爆发以来,疫情已经持续了一年多,大量的药物研究已经进行,但只有少数获得了 FDA 批准。我们的目标是使用一种管道优先考虑可再利用的药物,该管道系统地整合了 COVID-19 与药物之间的相互作用、深度图神经网络以及基于体外/人群的验证。我们首先通过 CTDbase 收集了所有与 COVID-19 患者治疗相关的现有药物(n=3635)。我们基于病毒诱饵、宿主基因、途径、药物和表型之间的相互作用构建了一个 COVID-19 知识图。我们使用深度图神经网络方法根据生物学相互作用推导出候选药物的表示。我们使用临床试验历史对候选药物进行优先级排序,然后使用它们的遗传谱、体外实验疗效和基于人群的治疗效果进行验证。我们突出了前 22 种药物,包括阿奇霉素、阿托伐他汀、阿司匹林、对乙酰氨基酚和沙丁胺醇。我们进一步确定了可能协同靶向 COVID-19 的药物组合。总之,我们证明了广泛的相互作用、深度神经网络和多种证据的整合可以促进 COVID-19 治疗候选药物的快速识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ad/8632883/81953d0b26ab/41598_2021_2353_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验