Klocke Melissa A, Garamella Jonathan, Subramanian Hari K K, Noireaux Vincent, Franco Elisa
Mechanical Engineering, University of California, Riverside, Riverside, CA, USA.
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA.
Synth Biol (Oxf). 2018 Feb 5;3(1):ysy001. doi: 10.1093/synbio/ysy001. eCollection 2018.
Deoxyribonucleic acid (DNA) nanotechnology is a growing field with potential intracellular applications. In this work, we use an cell-free transcription-translation (TXTL) system to assay the robustness of DNA nanotubes in a cytoplasmic environment. TXTL recapitulates physiological conditions as well as strong linear DNA degradation through the RecBCD complex, the major exonuclease in . We demonstrate that chemical modifications of the tiles making up DNA nanotubes extend their viability in TXTL for more than 24 h, with phosphorothioation of the sticky end backbone being the most effective. Furthermore, we show that a Chi-site double-stranded DNA, an inhibitor of the RecBCD complex, extends DNA nanotube lifetime significantly. These complementary approaches are a first step toward a systematic prototyping of DNA nanostructures in active cell-free cytoplasmic environments and expand the scope of TXTL utilization for bioengineering.
脱氧核糖核酸(DNA)纳米技术是一个不断发展的领域,具有潜在的细胞内应用前景。在这项工作中,我们使用无细胞转录-翻译(TXTL)系统来检测DNA纳米管在细胞质环境中的稳定性。TXTL能够重现生理条件,以及通过RecBCD复合物(大肠杆菌中的主要核酸外切酶)实现的强烈线性DNA降解。我们证明,构成DNA纳米管的组件的化学修饰可将其在TXTL中的存活时间延长超过24小时,其中粘性末端主链的硫代磷酸化最为有效。此外,我们表明,Chi位点双链DNA(RecBCD复合物的抑制剂)可显著延长DNA纳米管的寿命。这些互补方法是在活跃的无细胞细胞质环境中对DNA纳米结构进行系统原型设计的第一步,并扩展了TXTL在生物工程中的应用范围。