Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA.
Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
Nat Nanotechnol. 2015 Sep;10(9):748-60. doi: 10.1038/nnano.2015.195.
The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.
沃森-克里克碱基配对的可编程性,加上合成成本的降低,使得 DNA 成为组装分子结构和动态分子器件的广泛使用的材料。在无细胞环境中,DNA 纳米技术的研究人员已经能够扩大系统的复杂性,并在一定程度上定量表征反应机制,而这在工程基因电路或其他基于细胞的技术中是不可行的。然而,DNA 纳米技术最有趣的应用——最能利用基于 DNA 的系统的小尺寸、生物相容性和可编程性的应用——处于与生物学的交叉点。在这里,我们回顾了 DNA 纳米技术从试管到细胞的转变的最新进展。我们重点介绍了基于 DNA 的成像探针、智能治疗剂和药物输送系统原型的开发方面的关键成功,并探讨了细胞 DNA 纳米技术未来的挑战和机遇。