Suppr超能文献

基于深度学习的 COVID-19 胸部 X 光严重程度评分的改进与多群体通用性

Improvement and Multi-Population Generalizability of a Deep Learning-Based Chest Radiograph Severity Score for COVID-19.

作者信息

Li Matthew D, Arun Nishanth T, Aggarwal Mehak, Gupta Sharut, Singh Praveer, Little Brent P, Mendoza Dexter P, Corradi Gustavo C A, Takahashi Marcelo S, Ferraciolli Suely F, Succi Marc D, Lang Min, Bizzo Bernardo C, Dayan Ittai, Kitamura Felipe C, Kalpathy-Cramer Jayashree

出版信息

medRxiv. 2020 Sep 18:2020.09.15.20195453. doi: 10.1101/2020.09.15.20195453.

Abstract

PURPOSE

To improve and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations.

MATERIALS AND METHODS

A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test sets, including 3 from the United States (patients hospitalized at an academic medical center (N=154), patients hospitalized at a community hospital (N=113), and outpatients (N=108)) and 1 from Brazil (patients at an academic medical center emergency department (N=303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results.

RESULTS

Tuning the deep learning model with outpatient data improved model performance in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to baseline r=0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets.

CONCLUSIONS

Performance of a deep learning-based model that extracts a COVID-19 severity score on CXRs improved using training data from a different patient cohort (outpatient versus hospitalized) and generalized across multiple populations.

摘要

目的

改进并测试一种基于深度学习的模型的通用性,该模型用于评估不同患者群体胸部X光片(CXR)上的新冠肺炎肺部疾病严重程度。

材料与方法

使用250份门诊CXR对之前在新冠肺炎住院患者中训练的已发表的基于卷积暹罗神经网络的模型进行调整。该模型产生新冠肺炎肺部疾病严重程度的定量测量值(肺部X光严重程度(PXS)评分)。该模型在四个测试集的CXR上进行评估,其中三个来自美国(在学术医疗中心住院的患者(N = 154)、在社区医院住院的患者(N = 113)和门诊患者(N = 108)),一个来自巴西(学术医疗中心急诊科的患者(N = 303))。来自两国的放射科医生独立分配参考标准CXR严重程度评分,这些评分与PXS评分相关联,作为模型性能的一种衡量指标(Pearson r)。使用均匀流形近似与投影(UMAP)技术可视化神经网络结果。

结果

用门诊数据调整深度学习模型可提高两个美国住院患者数据集的模型性能(r = 0.88和r = 0.90,相比基线r = 0.86)。在美国门诊患者和巴西急诊科数据集上进行测试时,模型性能相似,但略低(分别为r = 0.86和r = 0.85)。UMAP显示该模型学习到了跨测试集通用的疾病严重程度信息。

结论

基于深度学习的模型在CXR上提取新冠肺炎严重程度评分的性能,通过使用来自不同患者队列(门诊患者与住院患者)的训练数据得到了改进,并且在多个群体中具有通用性。

相似文献

2
Multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19.
Medicine (Baltimore). 2022 Jul 22;101(29):e29587. doi: 10.1097/MD.0000000000029587.
3
Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks.
Radiol Artif Intell. 2020 Jul 22;2(4):e200079. doi: 10.1148/ryai.2020200079. eCollection 2020 Jul.
5
External COVID-19 Deep Learning Model Validation on ACR AI-LAB: It's a Brave New World.
J Am Coll Radiol. 2022 Jul;19(7):891-900. doi: 10.1016/j.jacr.2022.03.013. Epub 2022 Apr 8.
6
Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms.
Emerg Radiol. 2022 Apr;29(2):365-370. doi: 10.1007/s10140-022-02019-3. Epub 2022 Jan 10.
7
Assessing clinical applicability of COVID-19 detection in chest radiography with deep learning.
Sci Rep. 2022 Apr 21;12(1):6596. doi: 10.1038/s41598-022-10568-3.
10
Confidence-Aware Severity Assessment of Lung Disease from Chest X-Rays Using Deep Neural Network on a Multi-Reader Dataset.
J Imaging Inform Med. 2025 Apr;38(2):793-803. doi: 10.1007/s10278-024-01151-5. Epub 2024 Aug 20.

引用本文的文献

1
T cell responses in patients with COVID-19.
Nat Rev Immunol. 2020 Sep;20(9):529-536. doi: 10.1038/s41577-020-0402-6. Epub 2020 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验