Suppr超能文献

利用深度学习衍生的胸部 X 光评分评估风湿性疾病与普通人群 COVID-19 肺部损伤的严重程度。

Assessing the Severity of COVID-19 Lung Injury in Rheumatic Diseases Versus the General Population Using Deep Learning-Derived Chest Radiograph Scores.

机构信息

Massachusetts General Hospital and Harvard Medical School, Boston.

Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Arthritis Care Res (Hoboken). 2023 Mar;75(3):657-666. doi: 10.1002/acr.24883. Epub 2022 Oct 21.

Abstract

OBJECTIVE

COVID-19 patients with rheumatic disease have a higher risk of mechanical ventilation than the general population. The present study was undertaken to assess lung involvement using a validated deep learning algorithm that extracts a quantitative measure of radiographic lung disease severity.

METHODS

We performed a comparative cohort study of rheumatic disease patients with COVID-19 and ≥1 chest radiograph within ±2 weeks of COVID-19 diagnosis and matched comparators. We used unadjusted and adjusted (for age, Charlson comorbidity index, and interstitial lung disease) quantile regression to compare the maximum pulmonary x-ray severity (PXS) score at the 10th to 90th percentiles between groups. We evaluated the association of severe PXS score (>9) with mechanical ventilation and death using Cox regression.

RESULTS

We identified 70 patients with rheumatic disease and 463 general population comparators. Maximum PXS scores were similar in the rheumatic disease patients and comparators at the 10th to 60th percentiles but significantly higher among rheumatic disease patients at the 70th to 90th percentiles (90th percentile score of 10.2 versus 9.2; adjusted P = 0.03). Rheumatic disease patients were more likely to have a PXS score of >9 (20% versus 11%; P = 0.02), indicating severe pulmonary disease. Rheumatic disease patients with PXS scores >9 versus ≤9 had higher risk of mechanical ventilation (hazard ratio [HR] 24.1 [95% confidence interval (95% CI) 6.7, 86.9]) and death (HR 8.2 [95% CI 0.7, 90.4]).

CONCLUSION

Rheumatic disease patients with COVID-19 had more severe radiographic lung involvement than comparators. Higher PXS scores were associated with mechanical ventilation and will be important for future studies leveraging big data to assess COVID-19 outcomes in rheumatic disease patients.

摘要

目的

患有风湿性疾病的 COVID-19 患者发生机械通气的风险高于普通人群。本研究旨在使用经过验证的深度学习算法评估肺部受累情况,该算法可提取放射学肺疾病严重程度的定量指标。

方法

我们对 COVID-19 诊断后±2 周内有≥1 张胸部 X 线片的风湿性疾病 COVID-19 患者和匹配的对照组进行了比较队列研究。我们使用未经调整和调整(年龄、Charlson 合并症指数和间质性肺病)分位数回归来比较两组第 10 至 90 百分位数的最大 X 射线肺严重程度(PXS)评分。我们使用 Cox 回归评估严重 PXS 评分(>9)与机械通气和死亡的相关性。

结果

我们确定了 70 例风湿性疾病患者和 463 例普通人群对照组。在第 10 至 60 百分位数,风湿性疾病患者和对照组的最大 PXS 评分相似,但在第 70 至 90 百分位数,风湿性疾病患者的评分明显更高(90 百分位数评分 10.2 比 9.2;调整后 P=0.03)。风湿性疾病患者更有可能出现 PXS 评分>9(20%比 11%;P=0.02),表明患有严重肺部疾病。PXS 评分>9 的风湿性疾病患者与 PXS 评分≤9 的患者相比,机械通气的风险更高(风险比 [HR] 24.1[95%置信区间 95%CI(95%CI)6.7,86.9])和死亡(HR 8.2[95%CI 0.7,90.4])。

结论

患有 COVID-19 的风湿性疾病患者的放射学肺部受累程度比对照组更严重。较高的 PXS 评分与机械通气相关,对于利用大数据评估风湿性疾病患者 COVID-19 结局的未来研究将很重要。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验