Suppr超能文献

使用卷积暹罗神经网络对胸部X光片上的COVID-19肺部疾病严重程度进行自动评估和跟踪。

Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks.

作者信息

Li Matthew D, Arun Nishanth Thumbavanam, Gidwani Mishka, Chang Ken, Deng Francis, Little Brent P, Mendoza Dexter P, Lang Min, Lee Susanna I, O'Shea Aileen, Parakh Anushri, Singh Praveer, Kalpathy-Cramer Jayashree

机构信息

Athinoula A. Martinos Center for Biomedical Imaging (M.D.L., N.T.A., M.G., K.C., P.S., J.K.C.), Department of Radiology (F.D., M.L.), Division of Thoracic Imaging and Intervention (B.P.L, D.P.M.), Division of Abdominal Imaging (S.I.L., A.O., A.P.), and MGH and BWH Center for Clinical Data Science (J.K.) of the Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Radiol Artif Intell. 2020 Jul 22;2(4):e200079. doi: 10.1148/ryai.2020200079. eCollection 2020 Jul.

Abstract

PURPOSE

To develop an automated measure of COVID-19 pulmonary disease severity on chest radiographs (CXRs), for longitudinal disease tracking and outcome prediction.

MATERIALS AND METHODS

A convolutional Siamese neural network-based algorithm was trained to output a measure of pulmonary disease severity on CXRs (pulmonary x-ray severity (PXS) score), using weakly-supervised pretraining on ∼160,000 anterior-posterior images from CheXpert and transfer learning on 314 frontal CXRs from COVID-19 patients. The algorithm was evaluated on internal and external test sets from different hospitals (154 and 113 CXRs respectively). PXS scores were correlated with radiographic severity scores independently assigned by two thoracic radiologists and one in-training radiologist (Pearson r). For 92 internal test set patients with follow-up CXRs, PXS score change was compared to radiologist assessments of change (Spearman ρ). The association between PXS score and subsequent intubation or death was assessed. Bootstrap 95% confidence intervals (CI) were calculated.

RESULTS

PXS scores correlated with radiographic pulmonary disease severity scores assigned to CXRs in the internal and external test sets (r=0.86 (95%CI 0.80-0.90) and r=0.86 (95%CI 0.79-0.90) respectively). The direction of change in PXS score in follow-up CXRs agreed with radiologist assessment (ρ=0.74 (95%CI 0.63-0.81)). In patients not intubated on the admission CXR, the PXS score predicted subsequent intubation or death within three days of hospital admission (area under the receiver operating characteristic curve=0.80 (95%CI 0.75-0.85)).

CONCLUSION

A Siamese neural network-based severity score automatically measures radiographic COVID-19 pulmonary disease severity, which can be used to track disease change and predict subsequent intubation or death.

摘要

目的

开发一种用于胸部X光片(CXR)上COVID-19肺部疾病严重程度的自动测量方法,用于疾病纵向追踪和结果预测。

材料与方法

训练了一种基于卷积暹罗神经网络的算法,以输出CXR上肺部疾病严重程度的测量值(肺部X光严重程度(PXS)评分),使用来自CheXpert的约160,000张前后位图像进行弱监督预训练,并对来自COVID-19患者的314张正位CXR进行迁移学习。该算法在不同医院的内部和外部测试集(分别为154张和113张CXR)上进行评估。PXS评分与由两名胸科放射科医生和一名实习放射科医生独立分配的放射学严重程度评分相关(Pearson相关系数r)。对于92名有随访CXR的内部测试集患者,将PXS评分变化与放射科医生对变化的评估进行比较(Spearman相关系数ρ)。评估PXS评分与随后插管或死亡之间的关联。计算Bootstrap 95%置信区间(CI)。

结果

PXS评分与内部和外部测试集中分配给CXR的放射学肺部疾病严重程度评分相关(分别为r = 0.86(95%CI 0.80 - 0.90)和r = 0.86(95%CI 0.79 - 0.90))。随访CXR中PXS评分的变化方向与放射科医生的评估一致(ρ = 0.74(95%CI 0.63 - 0.81))。在入院CXR时未插管的患者中,PXS评分可预测入院后三天内的后续插管或死亡(受试者操作特征曲线下面积 = 0.80(95%CI 0.75 - 0.85))。

结论

基于暹罗神经网络的严重程度评分可自动测量放射学上的COVID-19肺部疾病严重程度,可用于追踪疾病变化并预测随后的插管或死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/913d/8082408/f8cbcffe9e7c/ryai.2020200079.fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验