Suppr超能文献

利用 1064nm 光进行血流的漫反射相关光谱测量。

Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.

机构信息

Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States.

Harvard Medical School, United States.

出版信息

J Biomed Opt. 2020 Sep;25(9). doi: 10.1117/1.JBO.25.9.097003.

Abstract

SIGNIFICANCE

Diffuse correlation spectroscopy (DCS) is an established optical modality that enables noninvasive measurements of blood flow in deep tissue by quantifying the temporal light intensity fluctuations generated by dynamic scattering of moving red blood cells. Compared with near-infrared spectroscopy, DCS is hampered by a limited signal-to-noise ratio (SNR) due to the need to use small detection apertures to preserve speckle contrast. However, DCS is a dynamic light scattering technique and does not rely on hemoglobin contrast; thus, there are significant SNR advantages to using longer wavelengths (>1000  nm) for the DCS measurement due to a variety of biophysical and regulatory factors.

AIM

We offer a quantitative assessment of the benefits and challenges of operating DCS at 1064 nm versus the typical 765 to 850 nm wavelength through simulations and experimental demonstrations.

APPROACH

We evaluate the photon budget, depth sensitivity, and SNR for detecting blood flow changes using numerical simulations. We discuss continuous wave (CW) and time-domain (TD) DCS hardware considerations for 1064 nm operation. We report proof-of-concept measurements in tissue-like phantoms and healthy adult volunteers.

RESULTS

DCS at 1064 nm offers higher intrinsic sensitivity to deep tissue compared with DCS measurements at the typically used wavelength range (765 to 850 nm) due to increased photon counts and a slower autocorrelation decay. These advantages are explored using simulations and are demonstrated using phantom and in vivo measurements. We show the first high-speed (cardiac pulsation-resolved), high-SNR measurements at large source-detector separation (3 cm) for CW-DCS and late temporal gates (1 ns) for TD-DCS.

CONCLUSIONS

DCS at 1064 nm offers a leap forward in the ability to monitor deep tissue blood flow and could be especially useful in increasing the reliability of cerebral blood flow monitoring in adults.

摘要

意义

漫射相关光谱(DCS)是一种成熟的光学模态,通过量化由运动红细胞动态散射产生的光强度随时间的波动,可以实现对深部组织血流的非侵入性测量。与近红外光谱相比,DCS 的信噪比(SNR)受到限制,因为需要使用小的探测孔径来保持散斑对比度。然而,DCS 是一种动态光散射技术,不依赖血红蛋白对比度;因此,由于各种生物物理和调节因素,使用较长波长(>1000nm)进行 DCS 测量具有显著的 SNR 优势。

目的

通过模拟和实验演示,对在 1064nm 处操作 DCS 的优势和挑战与典型的 765 至 850nm 波长进行定量评估。

方法

我们通过数值模拟评估了使用光子预算、深度灵敏度和 SNR 来检测血流变化的情况。我们讨论了用于 1064nm 操作的连续波(CW)和时域(TD)DCS 硬件注意事项。我们报告了在组织模拟体和健康成年志愿者中的概念验证测量结果。

结果

与通常使用的波长范围(765 至 850nm)相比,1064nm 处的 DCS 对深部组织具有更高的固有灵敏度,这是由于光子计数增加和自相关衰减减慢所致。这些优势通过模拟进行了探讨,并通过体模和体内测量进行了演示。我们展示了 CW-DCS 的第一个高速(可解析心动周期)、高 SNR 测量结果,以及用于 TD-DCS 的大源-探测器分离(3cm)和迟时门(1ns)。

结论

1064nm 处的 DCS 在监测深部组织血流的能力方面取得了重大进展,对于提高成人脑血流监测的可靠性可能特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验