Suppr超能文献

使用具有512×512单光子雪崩二极管阵列的两层扩散相关光谱分析模型的深度学习实现进行脑血流监测。

Cerebral blood flow monitoring using a deep learning implementation of the two-layer diffuse correlation spectroscopy analytical model with a 512 × 512 SPAD array.

作者信息

Pan Mingliang, Li Chenxu, Zhang Yuanzhe, Mollins Alan, Wang Quan, Erdogan Ahmet T, Hua Yuanyuan, Zang Zhenya, Finlayson Neil, Henderson Robert K, Day-Uei Li David

机构信息

University of Strathclyde, Department of Biomedical Engineering, Glasgow, United Kingdom.

University of Edinburgh, School of Engineering, Integrated Nano and Micro Systems (IMNS), Edinburgh, United Kingdom.

出版信息

Neurophotonics. 2025 Jul;12(3):035008. doi: 10.1117/1.NPh.12.3.035008. Epub 2025 Aug 18.

Abstract

SIGNIFICANCE

Multilayer (two- and three-layer) diffuse correlation spectroscopy (DCS) models improve cerebral blood flow index (CBFi) measurement sensitivity and mitigate interference from extracerebral tissues. However, their reliance on multiple predefined parameters (e.g., layer thickness and optical properties) and high computational load limit their feasibility for real-time bedside monitoring.

AIM

We aim to develop a fast, accurate DCS data processing method based on the two-layer DCS analytical model, enabling real-time cerebral perfusion monitoring with enhanced brain sensitivity.

APPROACH

We employed deep learning (DL) to accelerate DCS data processing. Unlike previous DCS networks trained on single-layer models, our network learns from the two-layer DCS analytical model, capturing extracerebral versus cerebral dynamics. Realistic noise was estimated from subject-specific baseline measurements using a SPAD array at a large source-detector separation (35 mm). The model was evaluated on test datasets simulated with a four-layer slab head model via Monte Carlo (MC) methods and compared against conventional single-exponential fitting and the two-layer analytical fitting. Two physiological response tests were also conducted to assess the real-world performance.

RESULTS

The proposed method bypasses traditional curve-fitting and achieves real-time monitoring of CBF changes at 35 mm separation for the first time with a DL approach. Validation on MC simulations shows superior accuracy in relative CBFi estimation (4.1% error versus 12.7% for single-exponential fitting) and significantly enhanced CBFi sensitivity (86.5% versus 57.7%). Although the two-layer analytical fitting offers optimal performance, it depends on strict assumptions and preconditions, and its computational complexity makes it time-consuming and unsuitable for real-time monitoring applications.In addition, our method minimizes the influence of superficial blood flow and is 750-fold faster than single-exponential fitting in a realistic scenario. tests further validated the method's ability to support real-time cerebral perfusion monitoring and pulsatile waveform recovery.

CONCLUSIONS

This study demonstrates that integrating DL with the two-layer DCS analytical model enables accurate, real-time cerebral perfusion monitoring without sacrificing depth sensitivity. The proposed method enhances CBFi sensitivity and recovery accuracy, supporting future deployment in bedside neuro-monitoring applications.

摘要

意义

多层(两层和三层)扩散相关光谱(DCS)模型提高了脑血流指数(CBFi)测量的灵敏度,并减轻了来自脑外组织的干扰。然而,它们对多个预定义参数(如层厚度和光学特性)的依赖以及高计算负荷限制了它们在床边实时监测中的可行性。

目的

我们旨在基于两层DCS分析模型开发一种快速、准确的DCS数据处理方法,实现具有更高脑灵敏度的实时脑灌注监测。

方法

我们采用深度学习(DL)来加速DCS数据处理。与之前在单层模型上训练的DCS网络不同,我们的网络从两层DCS分析模型中学习,捕捉脑外与脑内的动态变化。使用大源探测器间距(35毫米)的单光子雪崩二极管(SPAD)阵列从特定受试者的基线测量中估计实际噪声。该模型通过蒙特卡罗(MC)方法在使用四层平板头部模型模拟的测试数据集上进行评估,并与传统的单指数拟合和两层分析拟合进行比较。还进行了两项生理反应测试以评估实际性能。

结果

所提出的方法绕过了传统的曲线拟合,首次使用DL方法在35毫米间距下实现了对CBF变化的实时监测。在MC模拟上的验证显示,在相对CBFi估计方面具有更高的准确性(误差为4.1%,而单指数拟合为12.7%),并且CBFi灵敏度显著提高(86.5%对57.7%)。虽然两层分析拟合提供了最佳性能,但它依赖于严格的假设和前提条件,并且其计算复杂性使其耗时且不适用于实时监测应用。此外,我们的方法将浅表血流的影响降至最低,在实际场景中比单指数拟合快750倍。测试进一步验证了该方法支持实时脑灌注监测和脉动波形恢复的能力。

结论

本研究表明,将DL与两层DCS分析模型相结合能够在不牺牲深度灵敏度的情况下实现准确、实时的脑灌注监测。所提出的方法提高了CBFi灵敏度和恢复准确性,支持未来在床边神经监测应用中的部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3edd/12360787/c664f8b18da8/NPh-012-035008-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验