Routh Brandy N, Rathour Rahul K, Baumgardner Michael E, Kalmbach Brian E, Johnston Daniel, Brager Darrin H
Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
J Physiol. 2017 Jul 1;595(13):4431-4448. doi: 10.1113/JP274258. Epub 2017 May 23.
Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1 mice. In fmr1 L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na conductance density is higher in fmr1 L2/3 neurons. Measurements of three biophysically distinct K currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype.
Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1 mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1 mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1 neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na current was significantly larger in fmr1 neurons. Furthermore, the activation curve of somatic A-type K current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na and K channel function could reliably reproduce the observed increase in action potential firing and altered action potential waveform. These results, in conjunction with our prior findings on L5 neurons, suggest that principal neurons in the circuitry of the medial prefrontal cortex are altered in distinct ways in the fmr1 mouse and may contribute to dysfunctional prefrontal cortex processing in fragile X syndrome.
在fmr1基因敲除小鼠中,前额叶皮层的第2/3层神经元表现出更高的体细胞兴奋性增益,对于给定刺激会产生更多数量的动作电位。在fmr1基因敲除小鼠的第2/3层神经元中,动作电位更高、更快且更窄。外向膜片钳记录显示,fmr1基因敲除小鼠的第2/3层神经元中最大钠电导密度更高。对三种生物物理特性不同的钾电流的测量显示,快速失活(A型)钾电导的激活发生去极化偏移。对这些生物物理观察结果进行的真实神经元模拟重现了动作电位升高和重复放电的表型。
脆性X综合征是遗传性智力障碍和自闭症最常见的形式。前额叶皮层负责高级认知处理,前额叶功能障碍被认为是许多与脆性X综合征相关的认知和行为表型的基础。我们最近证明,由于几种电压门控离子通道的变化,fmr1基因敲除小鼠前额叶皮层第5层(L5)锥体神经元的体细胞和树突兴奋性发生了显著改变。除了L5锥体神经元外,L2/3锥体神经元在前额叶神经回路中也起着重要作用,整合来自较低脑区和对侧皮层的输入。使用全细胞电流钳记录,我们发现与野生型神经元相比,fmr1基因敲除小鼠前额叶皮层的L2/3锥体神经元对于给定刺激会产生更多动作电位。此外,fmr1基因敲除小鼠神经元中的动作电位明显更大、更快且更窄。对L2/3神经元外向膜片进行电压钳制显示,fmr1基因敲除小鼠神经元中的瞬时钠电流明显更大。此外,体细胞A型钾电流的激活曲线发生了去极化。基于真实电导的模拟显示,钠通道和钾通道功能的这些生物物理变化能够可靠地重现观察到的动作电位发放增加和动作电位波形改变。这些结果,连同我们之前关于L5神经元的发现,表明fmr1基因敲除小鼠内侧前额叶皮层神经回路中的主要神经元以不同方式发生了改变,可能导致脆性X综合征中前额叶皮层处理功能失调。