Suppr超能文献

活性粒子在巨型脂质囊泡中引起较大的形状变形。

Active particles induce large shape deformations in giant lipid vesicles.

作者信息

Vutukuri Hanumantha Rao, Hoore Masoud, Abaurrea-Velasco Clara, van Buren Lennard, Dutto Alessandro, Auth Thorsten, Fedosov Dmitry A, Gompper Gerhard, Vermant Jan

机构信息

Soft Materials, Department of Materials, ETH Zürich, Zürich, Switzerland.

Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.

出版信息

Nature. 2020 Oct;586(7827):52-56. doi: 10.1038/s41586-020-2730-x. Epub 2020 Sep 30.

Abstract

Biological cells generate intricate structures by sculpting their membrane from within to actively sense and respond to external stimuli or to explore their environment. Several pathogenic bacteria also provide examples of how localized forces strongly deform cell membranes from inside, leading to the invasion of neighbouring healthy mammalian cells. Giant unilamellar vesicles have been successfully used as a minimal model system with which to mimic biological cells, but the realization of a minimal system with localized active internal forces that can strongly deform lipid membranes from within and lead to dramatic shape changes remains challenging. Here we present a combined experimental and simulation study that demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations. Using confocal microscopy, in the experiments we explore the membrane response to local forces exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane changes, we perform Langevin dynamics simulations of active Brownian particles enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The most pronounced shape changes are observed at low and moderate particle loadings, with the formation of tether-like protrusions and highly branched, dendritic structures, whereas at high volume fractions globally deformed vesicle shapes are observed. The resulting state diagram predicts the conditions under which local internal forces generate various membrane shapes. A controlled realization of such distorted vesicle morphologies could improve the design of artificial systems such as small-scale soft robots and synthetic cells.

摘要

生物细胞通过从内部塑造细胞膜来生成复杂的结构,从而积极感知外部刺激并做出反应,或者探索其周围环境。一些致病细菌也展示了局部力如何从内部使细胞膜发生强烈变形,导致邻近健康哺乳动物细胞被入侵。巨型单层囊泡已成功用作模仿生物细胞的最小模型系统,但是要实现一个具有局部主动内力的最小系统,该内力能够从内部强烈变形脂质膜并导致显著的形状变化,仍然具有挑战性。在此,我们展示了一项结合实验和模拟的研究,该研究证明了包裹在巨型单层囊泡中的自推进粒子如何能诱导大量非平衡形状和活跃的膜波动。在实验中,我们使用共聚焦显微镜来探究膜对自泳式 Janus 微游动器施加的局部力的响应。为了量化动态膜变化,我们对由动态三角化表面建模的薄膜壳中包裹的活性布朗粒子进行朗之万动力学模拟。在低和中等粒子负载量下观察到最显著的形状变化,形成类似系链的突起和高度分支的树枝状结构,而在高体积分数下观察到全局变形的囊泡形状。由此产生的状态图预测了局部内力产生各种膜形状的条件。这种扭曲囊泡形态的可控实现可以改进诸如小型软机器人和合成细胞等人工系统的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验