Sciortino Alfredo, Faizi Hammad A, Fedosov Dmitry A, Frechette Layne, Vlahovska Petia M, Gompper Gerhard, Bausch Andreas R
Lehrstuhl für Zellbiophysik (E27), Physik Department, Technische Universität München, Garching bei München, Germany.
Center for Protein Assemblies, Garching bei München, Germany.
Nat Phys. 2025;21(5):799-807. doi: 10.1038/s41567-025-02839-3. Epub 2025 Mar 24.
Living cells can adapt their shape in response to their environment, a process driven by the interaction between their flexible membrane and the activity of the underlying cytoskeleton. However, the precise physical mechanisms of this coupling remain unclear. Here we show how cytoskeletal forces acting on a biomimetic membrane affect its deformations. Using a minimal cell model that consists of an active network of microtubules and molecular motors encapsulated inside lipid vesicles, we observe large shape fluctuations and travelling membrane deformations. Quantitative analysis of membrane and microtubule dynamics demonstrates how active forces set the temporal scale of vesicle fluctuations, giving rise to fluctuation spectra that differ in both their spatial and temporal decays from their counterparts in thermal equilibrium. Using simulations, we extend the classical framework of membrane fluctuations to active cytoskeleton-driven vesicles, demonstrating how correlated activity governs membrane dynamics and the roles of confinement, membrane material properties and cytoskeletal forces. Our findings provide a quantitative foundation for understanding the shape-morphing abilities of living cells.
活细胞能够根据其环境改变自身形状,这一过程由其柔性膜与底层细胞骨架活性之间的相互作用驱动。然而,这种耦合的确切物理机制仍不清楚。在这里,我们展示了作用于仿生膜的细胞骨架力如何影响其变形。使用一个由包裹在脂质囊泡内的微管和分子马达的活性网络组成的极简细胞模型,我们观察到了大的形状波动和行进的膜变形。对膜和微管动力学的定量分析表明,活性力如何设定囊泡波动的时间尺度,从而产生波动光谱,其空间和时间衰减与热平衡中的对应物不同。通过模拟,我们将膜波动的经典框架扩展到活性细胞骨架驱动的囊泡,展示了相关活性如何控制膜动力学以及限制、膜材料特性和细胞骨架力的作用。我们的发现为理解活细胞的形状变形能力提供了定量基础。