Suppr超能文献

研究个体内变异性的新前沿:贝叶斯多元广义自回归条件异方差模型。

A new frontier for studying within-person variability: Bayesian multivariate generalized autoregressive conditional heteroskedasticity models.

机构信息

Department of Psychology.

Department of Human Ecology.

出版信息

Psychol Methods. 2022 Oct;27(5):856-873. doi: 10.1037/met0000357. Epub 2020 Oct 1.

Abstract

Research on individual variation has received increased attention. The bulk of the models discussed in psychological research so far, focus mainly on the temporal development of the mean structure. We expand the view on within-person residual variability and present a new model parameterization derived from classic multivariate GARCH models used to predict and forecast volatility in financial time-series. We propose a new pdBEKK and a modified dynamic conditional correlation (DCC) model that accommodate external time-varying predictors for the within-person variance. The main goal of this work is to evaluate the potential usefulness of MGARCH models for research in within-person variability. MGARCH models partition the within-person variance into, at least, 3 components: An overall constant and unconditional baseline variance, a process that introduces variance conditional on previous innovations, or random shocks, and a process that governs the carry-over effects of previous conditional variance, similar to an AR model. These models allow for variance spillover effects from one time-series to another. We illustrate the pdBEKK- and the DCC-MGARCH on two individuals who have rated their daily positive and negative affect over 100 consecutive days. The full models comprised a multivariate ARMA(1,1) model for the means and included physical activity as moderator of the overall baseline variance. Overall, the pdBEKK seems to result in a more straightforward psychological interpretation, but the DCC is generally easier to estimate and can accommodate more simultaneous time-series. Both models require rather large amounts of datapoints to detect nonzero parameters. We provide an R-package bmgarch that facilitates the estimation of these types of models. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

个体变异的研究受到了越来越多的关注。迄今为止,心理研究中讨论的大多数模型主要集中在均值结构的时间发展上。我们扩展了对个体内残差变异性的看法,并提出了一种新的模型参数化方法,该方法源自用于预测和预测金融时间序列中波动性的经典多元 GARCH 模型。我们提出了一种新的 pdBEKK 和一种改进的动态条件相关(DCC)模型,该模型可以为个体内方差容纳外部时变预测因子。这项工作的主要目的是评估 MGARCH 模型在个体内变异性研究中的潜在有用性。MGARCH 模型将个体内方差分为至少 3 个组成部分:一个总体常数和无条件基线方差、一个根据先前创新或随机冲击引入方差的过程,以及一个控制先前条件方差的滞后效应的过程,类似于 AR 模型。这些模型允许一个时间序列到另一个时间序列的方差溢出效应。我们在两个个体上展示了 pdBEKK 和 DCC-MGARCH,这两个个体在 100 天内每天对自己的积极和消极情绪进行了评分。完整的模型包括一个用于均值的多元 ARMA(1,1)模型,并将身体活动作为总体基线方差的调节剂。总体而言,pdBEKK 似乎产生了更直接的心理解释,但 DCC 通常更容易估计,并且可以同时容纳更多的时间序列。这两种模型都需要相当多的数据点来检测非零参数。我们提供了一个 R 包 bmgarch,它可以方便地估计这些类型的模型。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验