Suppr超能文献

大数据技术在中国新冠肺炎疫情防控中的应用:经验与建议

Application of Big Data Technology for COVID-19 Prevention and Control in China: Lessons and Recommendations.

作者信息

Wu Jun, Wang Jian, Nicholas Stephen, Maitland Elizabeth, Fan Qiuyan

机构信息

Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China.

Dong Fureng Institute of Economic and Social Development, Wuhan University, Beijing, China.

出版信息

J Med Internet Res. 2020 Oct 9;22(10):e21980. doi: 10.2196/21980.

Abstract

BACKGROUND

In the prevention and control of infectious diseases, previous research on the application of big data technology has mainly focused on the early warning and early monitoring of infectious diseases. Although the application of big data technology for COVID-19 warning and monitoring remain important tasks, prevention of the disease's rapid spread and reduction of its impact on society are currently the most pressing challenges for the application of big data technology during the COVID-19 pandemic. After the outbreak of COVID-19 in Wuhan, the Chinese government and nongovernmental organizations actively used big data technology to prevent, contain, and control the spread of COVID-19.

OBJECTIVE

The aim of this study is to discuss the application of big data technology to prevent, contain, and control COVID-19 in China; draw lessons; and make recommendations.

METHODS

We discuss the data collection methods and key data information that existed in China before the outbreak of COVID-19 and how these data contributed to the prevention and control of COVID-19. Next, we discuss China's new data collection methods and new information assembled after the outbreak of COVID-19. Based on the data and information collected in China, we analyzed the application of big data technology from the perspectives of data sources, data application logic, data application level, and application results. In addition, we analyzed the issues, challenges, and responses encountered by China in the application of big data technology from four perspectives: data access, data use, data sharing, and data protection. Suggestions for improvements are made for data collection, data circulation, data innovation, and data security to help understand China's response to the epidemic and to provide lessons for other countries' prevention and control of COVID-19.

RESULTS

In the process of the prevention and control of COVID-19 in China, big data technology has played an important role in personal tracking, surveillance and early warning, tracking of the virus's sources, drug screening, medical treatment, resource allocation, and production recovery. The data used included location and travel data, medical and health data, news media data, government data, online consumption data, data collected by intelligent equipment, and epidemic prevention data. We identified a number of big data problems including low efficiency of data collection, difficulty in guaranteeing data quality, low efficiency of data use, lack of timely data sharing, and data privacy protection issues. To address these problems, we suggest unified data collection standards, innovative use of data, accelerated exchange and circulation of data, and a detailed and rigorous data protection system.

CONCLUSIONS

China has used big data technology to prevent and control COVID-19 in a timely manner. To prevent and control infectious diseases, countries must collect, clean, and integrate data from a wide range of sources; use big data technology to analyze a wide range of big data; create platforms for data analyses and sharing; and address privacy issues in the collection and use of big data.

摘要

背景

在传染病防控中,以往关于大数据技术应用的研究主要集中在传染病的预警和早期监测。尽管大数据技术在新冠疫情预警和监测方面的应用仍然是重要任务,但防止疾病快速传播并减少其对社会的影响,是当前新冠疫情期间大数据技术应用面临的最紧迫挑战。武汉爆发新冠疫情后,中国政府和非政府组织积极利用大数据技术预防、遏制和控制新冠疫情的传播。

目的

本研究旨在探讨大数据技术在中国预防、遏制和控制新冠疫情中的应用;吸取经验教训并提出建议。

方法

我们讨论了新冠疫情爆发前中国存在的数据收集方法和关键数据信息,以及这些数据如何有助于新冠疫情的防控。接下来,我们讨论了新冠疫情爆发后中国新的数据收集方法和新汇总的信息。基于在中国收集的数据和信息,我们从数据来源、数据应用逻辑、数据应用层面和应用结果等角度分析了大数据技术的应用。此外,我们从数据获取、数据使用、数据共享和数据保护四个角度分析了中国在大数据技术应用中遇到的问题、挑战及应对措施。针对数据收集、数据流通、数据创新和数据安全提出改进建议,以帮助了解中国对疫情的应对情况,并为其他国家防控新冠疫情提供经验教训。

结果

在中国防控新冠疫情的过程中,大数据技术在人员追踪、监测与预警、病毒溯源、药物筛选、医疗救治、资源调配和复工复产等方面发挥了重要作用。所使用的数据包括位置和行程数据、医疗卫生数据、新闻媒体数据、政府数据、线上消费数据、智能设备收集的数据以及防疫数据。我们发现了一些大数据问题,包括数据收集效率低、数据质量难以保证、数据使用效率低、数据共享不及时以及数据隐私保护问题。为解决这些问题,我们建议统一数据收集标准、创新数据使用方式、加速数据交换与流通,并建立详细且严格的数据保护体系。

结论

中国及时利用大数据技术防控新冠疫情。为防控传染病,各国必须收集、清理和整合来自广泛来源的数据;利用大数据技术分析海量大数据;创建数据分析和共享平台;并解决大数据收集和使用中的隐私问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0522/7561444/ed52fad92010/jmir_v22i10e21980_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验