一种用于 COVID-19 诊断和预后分析的全自动深度学习系统。

A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis.

机构信息

Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China.

Contributed equally.

出版信息

Eur Respir J. 2020 Aug 6;56(2). doi: 10.1183/13993003.00775-2020. Print 2020 Aug.

Abstract

Coronavirus disease 2019 (COVID-19) has spread globally, and medical resources become insufficient in many regions. Fast diagnosis of COVID-19 and finding high-risk patients with worse prognosis for early prevention and medical resource optimisation is important. Here, we proposed a fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis by routinely used computed tomography.We retrospectively collected 5372 patients with computed tomography images from seven cities or provinces. Firstly, 4106 patients with computed tomography images were used to pre-train the deep learning system, making it learn lung features. Following this, 1266 patients (924 with COVID-19 (471 had follow-up for >5 days) and 342 with other pneumonia) from six cities or provinces were enrolled to train and externally validate the performance of the deep learning system.In the four external validation sets, the deep learning system achieved good performance in identifying COVID-19 from other pneumonia (AUC 0.87 and 0.88, respectively) and viral pneumonia (AUC 0.86). Moreover, the deep learning system succeeded to stratify patients into high- and low-risk groups whose hospital-stay time had significant difference (p=0.013 and p=0.014, respectively). Without human assistance, the deep learning system automatically focused on abnormal areas that showed consistent characteristics with reported radiological findings.Deep learning provides a convenient tool for fast screening of COVID-19 and identifying potential high-risk patients, which may be helpful for medical resource optimisation and early prevention before patients show severe symptoms.

摘要

新型冠状病毒肺炎(COVID-19)在全球范围内传播,许多地区的医疗资源不足。快速诊断 COVID-19 并发现预后较差的高危患者,以便进行早期预防和优化医疗资源非常重要。在这里,我们提出了一种通过常规使用计算机断层扫描(CT)对 COVID-19 进行诊断和预后分析的全自动深度学习系统。我们回顾性地收集了来自七个城市或省份的 5372 名 CT 图像患者。首先,我们使用 4106 名 CT 图像患者来预训练深度学习系统,使其学习肺部特征。接下来,我们从六个城市或省份招募了 1266 名患者(924 名患有 COVID-19(471 名患者的随访时间超过 5 天)和 342 名患有其他肺炎),以训练和外部验证深度学习系统的性能。在四个外部验证集中,深度学习系统在识别 COVID-19 与其他肺炎(AUC 分别为 0.87 和 0.88)和病毒性肺炎(AUC 为 0.86)方面表现良好。此外,深度学习系统成功地将患者分为高风险和低风险组,两组患者的住院时间差异有统计学意义(p=0.013 和 p=0.014)。无需人工协助,深度学习系统可自动关注与报告的影像学发现具有一致特征的异常区域。深度学习为快速筛查 COVID-19 和识别潜在高危患者提供了便捷的工具,可能有助于在患者出现严重症状之前优化医疗资源和进行早期预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f641/7243395/85aad077038b/ERJ-00775-2020.01.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索