Plant Biology Department, University of Illinois, Urbana, IL, 61801, USA.
Geography Department, University of Illinois, Urbana, IL, 61801, USA.
Nat Commun. 2020 Oct 1;11(1):4925. doi: 10.1038/s41467-020-18768-z.
In northern Alaska nearly 65% of the terrestrial surface is composed of polygonal ground, where geomorphic tundra landforms disproportionately influence carbon and nutrient cycling over fine spatial scales. Process-based biogeochemical models used for local to Pan-Arctic projections of ecological responses to climate change typically operate at coarse-scales (1km-0.5°) at which fine-scale (<1km) tundra heterogeneity is often aggregated to the dominant land cover unit. Here, we evaluate the importance of tundra heterogeneity for representing soil carbon dynamics at fine to coarse spatial scales. We leveraged the legacy of data collected near Utqiaġvik, Alaska between 1973 and 2016 for model initiation, parameterization, and validation. Simulation uncertainty increased with a reduced representation of tundra heterogeneity and coarsening of spatial scale. Hierarchical cluster analysis of an ensemble of 21-century simulations reveals that a minimum of two tundra landforms (dry and wet) and a maximum of 4km spatial scale is necessary for minimizing uncertainties (<10%) in regional to Pan-Arctic modeling applications.
在阿拉斯加北部,近 65%的陆地表面由多边形地面组成,其中地貌冻原生态景观在精细空间尺度上不成比例地影响碳和养分循环。用于局部到泛北极气候变化生态响应预测的基于过程的生物地球化学模型通常在粗尺度(1km-0.5°)下运行,在该尺度下,精细尺度(<1km)的冻原生态异质性通常被聚合到主要的土地覆盖单元中。在这里,我们评估了冻原生态异质性在精细到粗尺度上代表土壤碳动态的重要性。我们利用了 1973 年至 2016 年期间在阿拉斯加乌特恰维克附近收集的数据来进行模型启动、参数化和验证。随着冻原生态异质性表示的减少和空间尺度的粗化,模拟不确定性增加。对 21 世纪模拟的集合的层次聚类分析表明,对于区域到泛北极建模应用,最小需要两种冻原生态景观(干燥和湿润)和最大 4km 的空间尺度,以最小化不确定性(<10%)。