Suppr超能文献

基于内在非线性神经总和模型的度量进行的先进图像和视频质量评估。

State-of-the-art image and video quality assessment with a metric based on an intrinsically non-linear neural summation model.

作者信息

Luna Raúl, Zabaleta Itziar, Bertalmío Marcelo

机构信息

Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain.

Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Front Neurosci. 2023 Jul 25;17:1222815. doi: 10.3389/fnins.2023.1222815. eCollection 2023.

Abstract

The development of automatic methods for image and video quality assessment that correlate well with the perception of human observers is a very challenging open problem in vision science, with numerous practical applications in disciplines such as image processing and computer vision, as well as in the media industry. In the past two decades, the goal of image quality research has been to improve upon classical metrics by developing models that emulate some aspects of the visual system, and while the progress has been considerable, state-of-the-art quality assessment methods still share a number of shortcomings, like their performance dropping considerably when they are tested on a database that is quite different from the one used to train them, or their significant limitations in predicting observer scores for high framerate videos. In this work we propose a novel objective method for image and video quality assessment that is based on the recently introduced Intrinsically Non-linear Receptive Field (INRF) formulation, a neural summation model that has been shown to be better at predicting neural activity and visual perception phenomena than the classical linear receptive field. Here we start by optimizing, on a classic image quality database, the four parameters of a very simple INRF-based metric, and proceed to test this metric on three other databases, showing that its performance equals or surpasses that of the state-of-the-art methods, some of them having millions of parameters. Next, we extend to the temporal domain this INRF image quality metric, and test it on several popular video quality datasets; again, the results of our proposed INRF-based video quality metric are shown to be very competitive.

摘要

开发与人类观察者的感知密切相关的图像和视频质量自动评估方法,是视觉科学中一个极具挑战性的开放性问题,在图像处理、计算机视觉以及媒体行业等学科中有众多实际应用。在过去二十年中,图像质量研究的目标是通过开发模拟视觉系统某些方面的模型来改进经典指标,虽然取得了相当大的进展,但最先进的质量评估方法仍然存在一些缺点,比如在与用于训练它们的数据库截然不同的数据库上进行测试时,其性能会大幅下降,或者在预测高帧率视频的观察者分数方面存在显著局限性。在这项工作中,我们提出了一种基于最近引入的固有非线性感受野(INRF)公式的新颖的图像和视频质量客观评估方法,这是一种神经求和模型,已被证明在预测神经活动和视觉感知现象方面比经典的线性感受野表现更好。在这里,我们首先在一个经典图像质量数据库上优化一个非常简单的基于INRF的指标的四个参数,然后在其他三个数据库上测试该指标,结果表明其性能等于或超过了一些拥有数百万参数的最先进方法。接下来,我们将这个基于INRF的图像质量指标扩展到时间域,并在几个流行的视频质量数据集上进行测试;同样,我们提出的基于INRF的视频质量指标的结果显示出很强的竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a4/10408451/c5cf2838076d/fnins-17-1222815-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验