Suppr超能文献

控制进化动力学以优化微生物生物修复

Controlling evolutionary dynamics to optimize microbial bioremediation.

作者信息

Shibasaki Shota, Mitri Sara

机构信息

Department of Fundamental Microbiology University of Lausanne Lausanne Switzerland.

出版信息

Evol Appl. 2020 Jul 28;13(9):2460-2471. doi: 10.1111/eva.13050. eCollection 2020 Oct.

Abstract

Some microbes have a fascinating ability to degrade compounds that are toxic for humans in a process called bioremediation. Although these traits help microbes survive the toxins, carrying them can be costly if the benefit of detoxification is shared by all surrounding microbes, whether they detoxify or not. Detoxification can thereby be seen as a public goods game, where nondegrading mutants can sweep through the population and collapse bioremediation. Here, we constructed an evolutionary game theoretical model to optimize bioremediation in a chemostat initially containing "cooperating" (detoxifying) microbes. We consider two types of mutants: "cheaters" that do not detoxify, and mutants that become resistant to the toxin through private mechanisms that do not benefit others. By manipulating the concentration and flow rate of a toxin into the chemostat, we identified conditions where cooperators can exclude cheaters that differ in their private resistance. However, eventually, cheaters are bound to invade. To overcome this inevitable outcome and maximize detoxification efficiency, cooperators can be periodically reinoculated into the population. Our study investigates the outcome of an evolutionary game combining both public and private goods and demonstrates how environmental parameters can be used to control evolutionary dynamics in practical applications.

摘要

一些微生物具有一种迷人的能力,能够在一个被称为生物修复的过程中降解对人类有毒的化合物。尽管这些特性有助于微生物在毒素环境中生存,但如果解毒的好处被周围所有微生物共享,无论它们是否解毒,拥有这些特性的代价可能很高。因此,解毒可以被视为一种公共物品博弈,在这种博弈中,不降解的突变体可以席卷整个种群并导致生物修复失败。在这里,我们构建了一个进化博弈理论模型,以优化最初含有“合作”(解毒)微生物的恒化器中的生物修复。我们考虑两种类型的突变体:不解毒的“作弊者”,以及通过不惠及其他微生物的私有机制对毒素产生抗性的突变体。通过控制进入恒化器的毒素浓度和流速,我们确定了合作者可以排除在私有抗性方面存在差异的作弊者的条件。然而,最终作弊者必然会入侵。为了克服这种不可避免的结果并使解毒效率最大化,可以定期将合作者重新接种到种群中。我们的研究调查了一个结合公共物品和私人物品的进化博弈的结果,并展示了在实际应用中如何利用环境参数来控制进化动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6290/7513707/9e3f69678116/EVA-13-2460-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验