Suppr超能文献

用于三维超声心动图左心室分割的多帧注意力网络

Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography.

作者信息

Ahn Shawn S, Ta Kevinminh, Thorn Stephanie, Langdon Jonathan, Sinusas Albert J, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT, USA.

出版信息

Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12901:348-357. doi: 10.1007/978-3-030-87193-2_33. Epub 2021 Sep 21.

Abstract

Echocardiography is one of the main imaging modalities used to assess the cardiovascular health of patients. Among the many analyses performed on echocardiography, segmentation of left ventricle is crucial to quantify the clinical measurements like ejection fraction. However, segmentation of left ventricle in 3D echocardiography remains a challenging and tedious task. In this paper, we propose a multi-frame attention network to improve the performance of segmentation of left ventricle in 3D echocardiography. The multi-frame attention mechanism allows highly correlated spatiotemporal features in a sequence of images that come after a target image to be used to augment the performance of segmentation. Experimental results shown on 51 in vivo porcine 3D+time echocardiography images show that utilizing correlated spatiotemporal features significantly improves the performance of left ventricle segmentation when compared to other standard deep learning-based medical image segmentation models.

摘要

超声心动图是用于评估患者心血管健康的主要成像方式之一。在对超声心动图进行的众多分析中,左心室分割对于量化诸如射血分数等临床测量指标至关重要。然而,三维超声心动图中的左心室分割仍然是一项具有挑战性且繁琐的任务。在本文中,我们提出了一种多帧注意力网络,以提高三维超声心动图中左心室分割的性能。多帧注意力机制允许使用目标图像之后的一系列图像中的高度相关的时空特征来增强分割性能。在51幅体内猪三维+时间超声心动图图像上显示的实验结果表明,与其他基于深度学习的标准医学图像分割模型相比,利用相关的时空特征可显著提高左心室分割的性能。

相似文献

1
Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography.用于三维超声心动图左心室分割的多帧注意力网络
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12901:348-357. doi: 10.1007/978-3-030-87193-2_33. Epub 2021 Sep 21.
7
9
Dynamic-Guided Spatiotemporal Attention for Echocardiography Video Segmentation.动态引导的超声心动图视频分割时空注意力机制
IEEE Trans Med Imaging. 2024 Nov;43(11):3843-3855. doi: 10.1109/TMI.2024.3403687. Epub 2024 Nov 4.

引用本文的文献

4

本文引用的文献

5
Video-based AI for beat-to-beat assessment of cardiac function.基于视频的 AI 用于逐拍评估心功能。
Nature. 2020 Apr;580(7802):252-256. doi: 10.1038/s41586-020-2145-8. Epub 2020 Mar 25.
6
Deep Learning for Cardiac Image Segmentation: A Review.用于心脏图像分割的深度学习:综述
Front Cardiovasc Med. 2020 Mar 5;7:25. doi: 10.3389/fcvm.2020.00025. eCollection 2020.
8
Deep learning interpretation of echocardiograms.超声心动图的深度学习解读
NPJ Digit Med. 2020 Jan 24;3:10. doi: 10.1038/s41746-019-0216-8. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验