Ahn Shawn S, Ta Kevinminh, Thorn Stephanie, Langdon Jonathan, Sinusas Albert J, Duncan James S
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT, USA.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12901:348-357. doi: 10.1007/978-3-030-87193-2_33. Epub 2021 Sep 21.
Echocardiography is one of the main imaging modalities used to assess the cardiovascular health of patients. Among the many analyses performed on echocardiography, segmentation of left ventricle is crucial to quantify the clinical measurements like ejection fraction. However, segmentation of left ventricle in 3D echocardiography remains a challenging and tedious task. In this paper, we propose a multi-frame attention network to improve the performance of segmentation of left ventricle in 3D echocardiography. The multi-frame attention mechanism allows highly correlated spatiotemporal features in a sequence of images that come after a target image to be used to augment the performance of segmentation. Experimental results shown on 51 in vivo porcine 3D+time echocardiography images show that utilizing correlated spatiotemporal features significantly improves the performance of left ventricle segmentation when compared to other standard deep learning-based medical image segmentation models.
超声心动图是用于评估患者心血管健康的主要成像方式之一。在对超声心动图进行的众多分析中,左心室分割对于量化诸如射血分数等临床测量指标至关重要。然而,三维超声心动图中的左心室分割仍然是一项具有挑战性且繁琐的任务。在本文中,我们提出了一种多帧注意力网络,以提高三维超声心动图中左心室分割的性能。多帧注意力机制允许使用目标图像之后的一系列图像中的高度相关的时空特征来增强分割性能。在51幅体内猪三维+时间超声心动图图像上显示的实验结果表明,与其他基于深度学习的标准医学图像分割模型相比,利用相关的时空特征可显著提高左心室分割的性能。