Zhao Qingyu, Kwon Dongjin, Pohl Kilian M
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA.
Center of Health Sciences, SRI International, Menlo Park, USA.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:145-153. doi: 10.1007/978-3-030-00931-1_17. Epub 2018 Sep 13.
Even though the number of longitudinal resting-state-fMRI studies is increasing, accurately characterizing the changes in functional connectivity across visits is a largely unexplored topic. To improve characterization, we design a Riemannian framework that represents the functional connectivity pattern of a subject at a visit as a point on a Riemannian manifold. Geodesic regression across the 'sample' points of a subject on that manifold then defines the longitudinal trajectory of their connectivity pattern. To identify group differences specific to regions of interest (ROI), we map the resulting trajectories of all subjects to a common tangent space via the Lie group action. We account for the uncertainty in choosing the common tangent space by proposing a test procedure based on the theory of latent -values. Unlike existing methods, our proposed approach identifies sex differences across 246 subjects, each of them being characterized by three rs-fMRI scans.
尽管纵向静息态功能磁共振成像研究的数量在不断增加,但准确描述不同访视间功能连接的变化在很大程度上仍是一个未被探索的课题。为了改进描述方法,我们设计了一个黎曼框架,将某一访视时受试者的功能连接模式表示为黎曼流形上的一个点。然后,通过该流形上受试者的“样本”点进行测地线回归,定义其连接模式的纵向轨迹。为了识别特定感兴趣区域(ROI)的组间差异,我们通过李群作用将所有受试者的所得轨迹映射到一个公共切空间。我们基于特征值理论提出了一种测试程序,以考虑选择公共切空间时的不确定性。与现有方法不同,我们提出的方法在246名受试者中识别出了性别差异,每名受试者均有三次静息态功能磁共振成像扫描数据。