Suppr超能文献

一种用于静息态功能连接纵向分析的黎曼几何框架。

A Riemannian Framework for Longitudinal Analysis of Resting-State Functional Connectivity.

作者信息

Zhao Qingyu, Kwon Dongjin, Pohl Kilian M

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA.

Center of Health Sciences, SRI International, Menlo Park, USA.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11072:145-153. doi: 10.1007/978-3-030-00931-1_17. Epub 2018 Sep 13.

Abstract

Even though the number of longitudinal resting-state-fMRI studies is increasing, accurately characterizing the changes in functional connectivity across visits is a largely unexplored topic. To improve characterization, we design a Riemannian framework that represents the functional connectivity pattern of a subject at a visit as a point on a Riemannian manifold. Geodesic regression across the 'sample' points of a subject on that manifold then defines the longitudinal trajectory of their connectivity pattern. To identify group differences specific to regions of interest (ROI), we map the resulting trajectories of all subjects to a common tangent space via the Lie group action. We account for the uncertainty in choosing the common tangent space by proposing a test procedure based on the theory of latent -values. Unlike existing methods, our proposed approach identifies sex differences across 246 subjects, each of them being characterized by three rs-fMRI scans.

摘要

尽管纵向静息态功能磁共振成像研究的数量在不断增加,但准确描述不同访视间功能连接的变化在很大程度上仍是一个未被探索的课题。为了改进描述方法,我们设计了一个黎曼框架,将某一访视时受试者的功能连接模式表示为黎曼流形上的一个点。然后,通过该流形上受试者的“样本”点进行测地线回归,定义其连接模式的纵向轨迹。为了识别特定感兴趣区域(ROI)的组间差异,我们通过李群作用将所有受试者的所得轨迹映射到一个公共切空间。我们基于特征值理论提出了一种测试程序,以考虑选择公共切空间时的不确定性。与现有方法不同,我们提出的方法在246名受试者中识别出了性别差异,每名受试者均有三次静息态功能磁共振成像扫描数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2872/7526985/720308bcf19d/nihms-1630604-f0002.jpg

相似文献

1
A Riemannian Framework for Longitudinal Analysis of Resting-State Functional Connectivity.一种用于静息态功能连接纵向分析的黎曼几何框架。
Med Image Comput Comput Assist Interv. 2018 Sep;11072:145-153. doi: 10.1007/978-3-030-00931-1_17. Epub 2018 Sep 13.
4
Elastic Functional Coding of Riemannian Trajectories.黎曼轨迹的弹性功能编码。
IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):922-936. doi: 10.1109/TPAMI.2016.2564409. Epub 2016 May 6.
8
Modeling sparse longitudinal data on Riemannian manifolds.对黎曼流形上的稀疏纵向数据进行建模。
Biometrics. 2021 Dec;77(4):1328-1341. doi: 10.1111/biom.13385. Epub 2020 Oct 28.

引用本文的文献

3
Visual Statistical Learning Alters Low-Dimensional Cortical Architecture.视觉统计学习改变低维皮质结构。
J Neurosci. 2025 Apr 23;45(17):e1932242025. doi: 10.1523/JNEUROSCI.1932-24.2025.

本文引用的文献

1
Efficient Parallel Transport in the Group of Diffeomorphisms via Reduction to the Lie Algebra.通过约化到李代数实现微分同胚群中的高效平行传输
Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). 2017 Sep;10551:186-198. doi: 10.1007/978-3-319-67675-3_17. Epub 2017 Sep 8.
2
Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging.黎曼非线性混合效应模型:分析神经影像学中的纵向变形
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:5777-5786. doi: 10.1109/CVPR.2017.612. Epub 2017 Nov 9.
5
Group Testing for Longitudinal Data.纵向数据的分组测试
Inf Process Med Imaging. 2015;24:139-51. doi: 10.1007/978-3-319-19992-4_11.
6
Transport on Riemannian manifold for functional connectivity-based classification.基于功能连接性分类的黎曼流形上的传输
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):405-12. doi: 10.1007/978-3-319-10470-6_51.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验