Suppr超能文献

用于功能连接性分析的带截断高斯混合的变分自编码器

Variational Autoencoder with Truncated Mixture of Gaussians for Functional Connectivity Analysis.

作者信息

Zhao Qingyu, Honnorat Nicolas, Adeli Ehsan, Pohl Kilian M

机构信息

Stanford University.

SRI International.

出版信息

Inf Process Med Imaging. 2019 Jun;11492:867-879. doi: 10.1007/978-3-030-20351-1_68. Epub 2019 May 22.

Abstract

Resting-state functional connectivity states are often identified as clusters of dynamic connectivity patterns. However, existing clustering approaches do not distinguish major states from rarely occurring minor states and hence are sensitive to noise. To address this issue, we propose to model major states using a non-linear generative process guided by a Gaussian-mixture distribution in a low-dimensional latent space, while separately modeling the connectivity patterns of minor states by a non-informative uniform distribution. We embed this truncated Gaussian-Mixture model in a Variational Autoencoder framework to obtain a general joint clustering and outlier detection approach, tGM-VAE. When applied to synthetic data with known ground-truth, tGM-VAE is more accurate in clustering connectivity patterns than existing approaches. On the rs-fMRI of 593 healthy adolescents, tGM-VAE identifies meaningful major connectivity states. The dwell time of these states significantly correlates with age.

摘要

静息态功能连接状态通常被识别为动态连接模式的聚类。然而,现有的聚类方法无法区分主要状态和罕见的次要状态,因此对噪声敏感。为了解决这个问题,我们建议在低维潜在空间中使用由高斯混合分布引导的非线性生成过程对主要状态进行建模,同时通过非信息性均匀分布分别对次要状态的连接模式进行建模。我们将这个截断的高斯混合模型嵌入到变分自编码器框架中,以获得一种通用的联合聚类和异常值检测方法,即tGM-VAE。当应用于具有已知真实情况的合成数据时,tGM-VAE在聚类连接模式方面比现有方法更准确。在593名健康青少年的静息态功能磁共振成像数据上,tGM-VAE识别出有意义的主要连接状态。这些状态的停留时间与年龄显著相关。

相似文献

3
Clustering Analysis via Deep Generative Models With Mixture Models.基于混合模型的深度生成模型的聚类分析
IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):340-350. doi: 10.1109/TNNLS.2020.3027761. Epub 2022 Jan 5.
7
A robust variational autoencoder using beta divergence.一种使用贝塔散度的稳健变分自编码器。
Knowl Based Syst. 2022 Feb 28;238. doi: 10.1016/j.knosys.2021.107886. Epub 2021 Dec 10.

引用本文的文献

1
SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.SpaRG:用于可泛化功能磁共振成像分析的稀疏重建图
Mach Learn Clin Neuroimaging (2024). 2025;15266:46-56. doi: 10.1007/978-3-031-78761-4_5. Epub 2024 Dec 6.
5
Representation learning of resting state fMRI with variational autoencoder.基于变分自编码器的静息态 fMRI 表示学习。
Neuroimage. 2021 Nov 1;241:118423. doi: 10.1016/j.neuroimage.2021.118423. Epub 2021 Jul 23.
6
Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis.用于静息态功能磁共振成像分析的时空图卷积
Med Image Comput Comput Assist Interv. 2020 Oct;12267:528-538. doi: 10.1007/978-3-030-59728-3_52. Epub 2020 Sep 29.
7
Variational AutoEncoder For Regression: Application to Brain Aging Analysis.用于回归的变分自编码器:在脑老化分析中的应用
Med Image Comput Comput Assist Interv. 2019 Oct;11765:823-831. doi: 10.1007/978-3-030-32245-8_91. Epub 2019 Oct 10.

本文引用的文献

1
A Riemannian Framework for Longitudinal Analysis of Resting-State Functional Connectivity.一种用于静息态功能连接纵向分析的黎曼几何框架。
Med Image Comput Comput Assist Interv. 2018 Sep;11072:145-153. doi: 10.1007/978-3-030-00931-1_17. Epub 2018 Sep 13.
2
Altered Brain Developmental Trajectories in Adolescents After Initiating Drinking.青少年开始饮酒后大脑发育轨迹的改变。
Am J Psychiatry. 2018 Apr 1;175(4):370-380. doi: 10.1176/appi.ajp.2017.17040469. Epub 2017 Oct 31.
8
Time-resolved resting-state brain networks.时分辨静息态脑网络。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6. doi: 10.1073/pnas.1400181111. Epub 2014 Jun 30.
10
Tracking whole-brain connectivity dynamics in the resting state.在静息状态下追踪全脑连接动力学。
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验