Bouvel Mathilde, Gambette Philippe, Mansouri Marefatollah
Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, 77454, Marne-la-Vallée, France.
J Math Biol. 2020 Dec;81(6-7):1357-1395. doi: 10.1007/s00285-020-01543-5. Epub 2020 Oct 1.
Phylogenetic networks generalize phylogenetic trees, and have been introduced in order to describe evolution in the case of transfer of genetic material between coexisting species. There are many classes of phylogenetic networks, which can all be modeled as families of graphs with labeled leaves. In this paper, we focus on rooted and unrooted level-k networks and provide enumeration formulas (exact and asymptotic) for rooted and unrooted level-1 and level-2 phylogenetic networks with a given number of leaves. We also prove that the distribution of some parameters of these networks (such as their number of cycles) are asymptotically normally distributed. These results are obtained by first providing a recursive description (also called combinatorial specification) of our networks, and by next applying classical methods of enumerative, symbolic and analytic combinatorics.
系统发生网络是系统发生树的推广,其被引入是为了描述在共存物种之间发生遗传物质转移情况下的进化过程。系统发生网络有许多类别,它们都可以被建模为具有带标签叶子的图族。在本文中,我们关注有根和无根的k级网络,并给出了具有给定叶子数的有根和无根1级及2级系统发生网络的枚举公式(精确公式和渐近公式)。我们还证明了这些网络的一些参数(如它们的圈数)的分布渐近正态分布。这些结果首先是通过对我们的网络给出递归描述(也称为组合规范),然后应用枚举、符号和解析组合学的经典方法得到的。